
n

ement
chical
eans to

iform
ts and
lication

rry exe-
re. The
nt, and
cument

w para-
ent the
ow how

s, user

To appear in ACM Transactions on Information Systems
Extending Document Management Systems
with User-Specific Active Properties

Paul Dourish, W. Keith Edwards, Anthony LaMarca, John Lamping,
Karin Petersen, Michael Salisbury, Douglas B. Terry and James Thornto

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto
CA 94304
USA

{dourish, kedwards, lamarca, lamping, petersen, salisbury, terry, jthornto}@parc.xerox.com

Abstract

Document properties are a compelling infrastructure on which to develop document manag
applications. A property-based approach avoids many of the problems of traditional hierar
storage mechanisms, reflects document organizations meaningful to user tasks, provides a m
integrate the perspectives of multiple individuals and groups, and does this all within a un
interaction framework. Document properties can reflect not only categorizations of documen
document use, but also expressions of desired system activity, such as sharing criteria, rep
management and versioning.

Augmenting property-based document management systems with active properties that ca
cutable code enables the provision of document-based services on a property infrastructu
combination of document properties as a uniform mechanism for document manageme
active properties as a way of delivering document services, represents a new paradigm for do
management infrastructures.

The Placeless Documents system is an experimental prototype developed to explore this ne
digm. It is based on the seamless integration of user-specific, active properties. We pres
fundamental design approach, explore the challenges and opportunities it presents, and sh
our architecture deals with them.

Categories and Subject Descriptors: C.2 [Computer-Communication Networks]: Distributed
Systems — Distributed databases; D.4 [Operating Systems]: File Systems Management — Dis-
tributed file systems; E.5 [Files]: Organization/structure; H.3 [Information Storage and
Retrieval] Information Storage — File organization; H.3 [Information Storage and Retrieval]:
Systems and Software — Distributed systems.

General Terms: Design.

Additional Key Words and Phrases: Document management systems, document service
experience, active properties, component software.
1

d of the
ation in
 users
mation
se hier-
uments
han on
hyper-

ument
in only
ganiza-
h user
999] or
an they
nt. For
ent on
aliases
earch.

 they
t con-
hedul-

tion
 group
ch as
 on the
rding to

ding
goriza-
ment

y that

ch as
e can
cument
uiring

cument.
ey are
1 INTRODUCTION
Whether managing email messages, spreadsheets, image files or textual material, the worl
desktop computer is a world of documents, and most users organize their documents by loc
hierarchies. File systems, for instance, impose a hierarchical structure of folders onto which
map their own semantic structures. More generally, hierarchies pervade document and infor
storage systems. Email systems group mail messages hierarchically, while web browsers u
archies to store bookmarks. Hypertext systems have explored richer models for relating doc
and document components, but have typically been focussed more on information retrieval t
document organization; and still, although a set of web pages may be linked into complex
structures, the HTML source is typically stored in hierarchically-organised files.

Unfortunately, strict hierarchical structures can map poorly to user needs. The use of doc
locations as a fundamental organizing principle, and the restriction that documents appear
one location at a time, force users to create strict categorizations of document types and or
tion. Studies of actual document filing practices suggest that these restrictions interfere wit
needs. In the cases of real world document collections, studies such as that of Trigg et al. [1
Bowker and Star [1994] show that categorization schemes are far less stable or absolute th
might seem. These problems carry over into the domain of electronic document manageme
example, Barreau and Nardi [1995] present findings from a set of studies of file managem
personal computers. They observe little use of deeply nested structure or cross-linking (via
or symbolic links), and instead note a preference for visual grouping and location-based s
Strict hierarchical filing can make it hard for users to:

• File documents. Documents can appear in only one place in the hierarchy, even though
may play different roles and be relevant to multiple activities. For instance, a documen
cerning upcoming travel plans might be relevant to both budgetary decisions and to sc
ing, but it can only be filed at one location in the hierarchy.

• Manage documents. Locations in the hierarchy conflate two roles, for document organiza
and document management. For example, not only are folders or directories used to
related files, but they are also typically the unit of administrative control for purposes su
back-ups and remote access. These administrative functions, then, impose constraints
organization of documents. These demands make it harder to organize documents acco
user needs.

• Locate documents. Documents may be filed according to one criterion, but extracted accor
to another. However, hierarchical systems cannot represent the cross-cutting set of cate
tions that might apply to a group of documents, requiring that document filing and docu
retrieval be performed uniformly.

• Share documents. An organisation that makes sense to one person may not reflect the wa
other relevant people think about the documents or need to group them.

To mitigate these problems, most file systems provide some “file pointer” mechanism su
aliases or links, allowing documents to logically appear in multiple folders. However, thes
introduce as many problems as they solve. They create confusing distinctions among do
name, document location and document identity, which make them difficult to manage, by req
users to understand the differences between acting on the link and acting on the target do
Moreover, these distinctions are managed differently in each type of file system; although th
2

indows

rovide
eful
new

nt. Our
 the pri-
ents.

 the sys-
ight be
tween
raction

-specific

e sort
etails

s facility
for doc-
ms, but
cedure

alue that
s to be

s cer-
 paper
s, while

ument

s. First,
f files;
nt sets
ace for

any
s to
ative,

 addition
intended to address similar problems, mechanisms such as aliases in MacOS, shortcuts in W
and hard and symbolic links in UNIX all have different semantics.

In the face of all these problems, we conclude that, while strict hierarchies of locations may p
a logical structure for document storage (meeting the needs of the system), they provide less us
support for document interaction (failing to meet the needs of users). This led us to investigate
models for user-centered document interaction.

1.1 Placeless Documents
This article reports on our ongoing research into a new approach to document manageme
approach is based on document properties, rather than document locations. Properties are
mary, uniform means for organizing, grouping, managing, controlling and retrieving docum
Document properties are features of a document that are meaningful to users, rather than to
tem. Documents can have any number of properties, reflecting the different features that m
relevant to users at different times or in different contexts. To emphasize the difference be
interaction managed through document properties and the more traditional approach of inte
managed through document locations, we call our system Placeless Documents.

The Placeless Documents design is based on three core features: uniform interaction, user
properties, and active properties.

Uniform Interaction. Most document storage and management systems already provide som
of document property (or “metadata”) mechanism. Even conventional file systems record d
such as the owner of a file, its length, and when it was last accessed. Our approach takes thi
much further. In the Placeless Documents system, document properties are the primary tool
ument management and interaction. They are used to record not only traditional metadata ite
also user categorizations, keywords, links to related items (such as earlier versions or pro
manuals), content-based features (such as indices or translations), and any other arbitrary v
a user or a program wants to associate with the document. This allows document propertie
used as a uniform interface for all document interactions.

User-Specific Properties. One important aspect of document properties is that a document ha
tain properties for a given individual. While one person might think of a document as being a
about Placeless Documents, someone else might think of it as an item in a clearance proces
a third person might regard it as a disclosure of intellectual property. In other words, doc
properties are expressed relative to the consumer of the document, rather than the producer. This is
a fundamental aspect of the Placeless Documents design, and it manifests itself in two way
the system emphasizes high-level properties of documents rather than low-level properties o
and second, it supports the fact that different individuals may have different and independe
of properties related to the same document. The property model provides the same interf
properties that are private to an individual or public to the world.

Active Properties. A system using properties as a uniform categorization model provides m
advantages for user-centered document management. However, we can also use propertiecon-
trol document behavior. In the Placeless Documents system, properties can be not only inform
or what we call static properties; they can also be effective, or what we call active properties. Like
static properties, active properties can be assigned by users and added to documents; but in
3

r aug-
es the
bnails)
ause all

ng both
not only
nd con-

ity of
e prop-
 system

s on the
proper-
. The

tunities
ties and

d inter-
 of the
nges of

 a doc-
m is the

134k”);
ment
stem

 man-
res and

entation,
nterface

ce it
r-
unch
 such as
n the fea-
hes, for
to this core behavior, active properties carry winnable code that can be invoked to control o
ment document functionality. For example, a “backup” property can contain code that caus
document to be written to tape; a “summarize” property can cause a summary (text or thum
to be generated whenever the document content is changed; and a “logged” property can c
document accesses to be recorded.

Placeless Documents derives much of its power by combining these three features. By havi
static and active properties, Placeless lets users employ the same uniform interaction model
to manage and group their documents, but also to control document behavior and to extend a
figure functionality. Active properties can give users control over the configuration and activ
system services such as content migration, backup, and load balancing. By combining activ
erties with a user-specific approach, the system can allow users to tailor the behavior of the
to match their own specific needs, while still sharing uniform access to document content.

This article presents the design of the Placeless Documents system. In particular, it focuse
technical issues that arise in extending property-based document management with active
ties, and in a system that uses document properties as a uniform interaction paradigm
introduction of active properties into a document management system presents both oppor
and challenges; we describe how our architecture has developed to support active proper
how active properties influence application development.

In the next section, we outline the use of document properties as the basis for managing an
acting with documents, and discuss related approaches. We then introduce the design
Placeless Documents system before focussing in more detail on how we tackled the challe
active properties.

2 MANAGING DOCUMENTS USING PROPERTIES
A variety of features make document properties an appealing model for the development of
ument management system. Most significant, perhaps, for the needs of an interactive syste
uniformity of interaction that properties allow.

Document properties can be used to reflect features of the documents themselves (“size =
of the activities over the document (“last-read = Dec 15 8:22”) of the relationship of the docu
to user activities (“topic = budget”); and of the user’s requirements of the document sy
(“backup.frequency = nightly”). All these different facets of document management can be
aged through the same fundamental mechanism and hence the same interactive structu
styles. Properties like these can be used to group documents, to control their status and pres
and to search for them; they can play the same role as file names, file system locations, user i
switches and application-specific properties, but within a single, uniform framework.

A single, unified “property space” yields further benefits even with only static properties, sin
also provides uniform integration between applications. Suppose the mail system records its info
mation as document properties (“mail.from = lamarca@parc.xerox.com”, “mail.subject = l
meeting Wednesday”) and that same property mechanism is also used by other applications
the document summarizer, the access manager, word processor, contact database, etc. The
tures of each of these systems can be combined at a single level. Property level searc
4

erwise

-based
rs on the
tion, so

ility that
tion can
ompo-

 that are
nd the

When
nt; it is
, other
ent; our
k to see
 prop-
rived

elevant

erties
 simple

en Mark
ument
rrently
p; and
rovide
makes.
uences

ible for
e can use
ive and
evel of
arate

 active
 for the
proach
users to
terac-
celess
instance, can refer to and combine the data elements of each application, which would oth
require multiple applications with independent, private interfaces.

Since document properties are individuable entities, independent of each other, a property
system can also manage the separate properties reflecting the perspectives of different use
same document. Properties are an entirely compositional approach to document organiza
that multiple different views can be provided on the same document space.

We can also use properties to group documents. Placeless Documents offers a collection fac
allows users to group documents together and act on them as a unit. Membership in a collec
be derived dynamically according to document properties (although they also have static c
nents, as will be discussed later).

Of course, not all “properties” are the same. Some properties are aspects of the document
universally applicable to all document consumers, such as the document’s creation time a
format of its content. In contrast, other properties are relevant only to specific individuals.
one user tags a document as “interesting”, that should not affect others’ view of the docume
a personal property indicating only their own relationship to the document. By the same token
users might have attached other properties reflecting their own perspectives on the docum
user should not want to see those properties by default (although they should be able to as
them, if allowed). The property model provides natural support for these different aspects of
erties. Since the model makes properties explicit entities in their own right, not merely de
features of documents, it allows us to make the property/document relationship one that is r
to document consumers.

Active properties extend this uniform control to behavior as well as structure. Active prop
encapsulate not only names and values but also active code. Their design is motivated by the
observation that some properties have direct computational consequences. For instance, wh
attaches the “important” property to documents, he might want that to mean that the doc
should be copied to a backing store regularly. Similarly, if Jonathan marks a document as “cu
in progress,” he might want an up-to-date copy to be maintained on his laptop for his next tri
the fact that a document is being jointly authored with a colleague suggests that it should p
multiple different versions and be able to control and integrate changes that each contributor
In other words, a variety of properties expressing high-level user concerns can have conseq
for how the system should operate. By allowing properties to carry executable code, respons
performing relevant tasks that can achieve the needs expressed by these user concerns, w
this same simple property mechanism to make the document management system act
responsive. In turn, using properties to control these features of system behavior allows a l
uniformity and flexibility that is hard to achieve in a world made up of tens or hundreds of sep
applications and control panels.

The combination of document properties as a uniform means of document interaction and
properties as a mechanism for the delivery of document services constitutes a new paradigm
development of document management infrastructures. Although some aspects of our ap
have appeared in other systems, the uniform use of document properties as a means for
manage and control document collections in a distributed environment results in a different in
tion style and a new means of creating and delivering application services. The Pla
5

ugh an

anage-
 model
 sys-

er and
e prop-

 “time-
mail

streams
he pri-
ncerns
ary,
ound

 Place-
del, but
virtual
sduc-
uments
hough,
terac-
s is a
ss the

 Docu-
provide
d “ls”

operty
 can
apsulate
] has
cts, but
ement.

 similar
e-based
mbers,
er than
o Place-
Documents project has been exploring the opportunities this new paradigm presents thro
experimental infrastructure.

2.1 Related Work
Placeless Documents is not the first system to explore alternative models for document m
ment, or the first to employ properties as a means to do this. Most file systems provide some
of properties or file metadata, although this has typically been fairly restricted. More modern
tems, such as the file systems provided by BeOS [Giampaolo, 1998] or Windows 2000 [Richt
Cabrera, 1998] extend these mechanisms to support arbitrary properties, but they do not us
erties as the primary, uniform mechanism for document interaction.

The Lifestreams system, originally developed at Yale [Freeman and Fertig, 1995], employs a
line” metaphor for managing personal document collections. All documents, including e
messages, working files, etc., are organised according to the time that they entered the Life
system. Filters can be applied to focus on particular documents, but the timeline is always t
mary organizing metaphor for the document collection. Lifestreams shares some of our co
with a uniform model of interaction, but differs in how this is realized by maintaining a prim
super-ordinate filing mechanism (the timeline) and in organizing documents primarily ar
system-derived properties rather than user-derived ones.

The Semantic File System (SFS), developed by Gifford et al. [1991], has some similarities to
less Documents in terms of its basic model. SFS uses a traditional file system interaction mo
backs it with a dynamic database rather than traditional file system storage. It provides “
directories” that are actually queries over the document collection, and provides arbitrary “tran
ers” that represent file system documents in the data tables. Collections in Placeless Doc
share a number of basic features with the virtual directories of the Semantic File System, alt
as will be discussed further, our collections provide additional features to aid in everyday in
tion. Indeed, our focus on supporting direct user interaction for everyday document task
primary point of departure from SFS, which was oriented largely towards being able to harne
power of a database in file system-oriented command-line interfaces. Although Placeless
ments provides a means for file system-based interaction with queries and documents, we
this largely as a convenience for the integration of legacy applications; in our model, “cd” an
do not constitute a user interface.

Although a variety of document management systems provide some sort of document pr
facility, few provide support for activity. In Lotus Notes or Xerox’s DocuShare, applications
manage documents according to their properties, but the properties themselves cannot enc
active functionality. The Multivalent Documents work at Berkeley [Phelps and Wilensky, 1996
a means to activate document content by means of small, dynamically-loaded program obje
they provide control only over document content, rather than higher-level document manag

The notion of being able to attach code to documents as a means to control their behavior is
to approaches taken in some other areas of systems development. For example, prototyp
object-oriented programming languages such as Self [Unger and Smith, 1987] or Cecil [Cha
1992] adopt a model that is similar to ours; these languages focus directly on objects rath
classes and blur the distinction between slots (instance variables) and methods. In contrast t
6

e direct

xplored
hanisms
sider-
ducing
operating
ogram-
anised

he basic
cerns that
s than
lar set-

ms with
 active
 to data
ilar to

s from
m. This
em must
 meta-

 many
rd data-
nt
tabase
sulated
e use of
ut pre-
e direct
le of
 expec-
 data
e way

as and
 of this

ument
less Documents, however, these systems are largely tools for programmers and provide littl
support for end-users.

Finally, issues surrounding the use of user-level code to extend system behavior have been e
in other areas. Operating systems, such as Spin [Bershad et al., 1995], have provided mec
for user-level extensions to operating system functionality. This allows them to achieve con
able performance improvement by allowing user code to run safely inside the kernel, both re
the overhead of crossing the border between user space and system space and tuning the
system policies to match user needs. Again, however, these facilities are provided at the pr
mer level, and correspond to a systems-level view of OS functionality, rather than being org
around high-level user needs.

2.2 Document Systems and Databases
One area of research that requires particular mention is database management systems. T
relational database model reflects an approach that arose in response to the same set of con
motivate our work, by providing ways to express richer sets of relationships between item
strict hierarchies allow, and extracting structure as needed according to the needs of particu
tings and situations. Object-oriented databases extend these ideas by combining data ite
functionality to produce encapsulated objects, and defining relationships between them; and
databases also provide a model that allows activity and processing functionality to be added
items [Kim, 1990; Paton and Diaz, 1999]. In many ways, these reflect a set of concerns sim
those that have shaped the Placeless Documents design.

However, other criteria have also influenced our design, and have led to significant difference
the traditional database approach. The first of these is that Placeless is a document syste
introduces a duality between metadata (properties) and content, and suggests that the syst
have direct support for both. At the same time, it is crucial to our model that documents and
data be maintained separately, so that we can dynamically incorporate document content from
different sources; so encoding document content as BLOBs (binary large objects) in a standa
base would not be a sufficient solution.1 The ability to incorporate pointers to external conte
within a framework based around metadata objects is not typically a core component of da
systems (although systems such as Garlic [Cody et al., 1995] do provide support for encap
content objects). Second, Placeless is designed to support end users directly. Through th
properties and collections, users can create informal and fluid document organizations witho
defined property taxonomies or schemas. Through the use of active properties, users hav
control over a compositional means for specifying system functionality. Support for this sty
direct interaction requires simpler conceptual models for end-users, and sets different usage
tations and effective optimizations. In particular, it leads to a different set of trade-offs for
structures and typing. The more fluid sorts of interaction in which end users engage and th
that user information structures evolve over time mitigate against the use of rigid schem
strong typing. Much of our implementation activity has been focussed on the consequences
issue.

1. Similarly, this separation of metadata and content is also a distinction between Placeless Documents and doc
systems based on XML, although we can use XML to import and export documents.
7

 for fluid
he Place-
t system

 active
 presents
s fit into
ss Doc-

multiple
about
t “con-
cument

ment
ferences

nt.

e docu-

ds
he doc-
he base
s a ref-
sentially
ot hold
ent ref-
Of course, these are largely matters of emphasis. Database systems can, naturally, be used
interaction and to manage external content, and indeed, there is a database at the core of t
less Documents system. However, the different patterns of use that an end-user documen
encounters raises a different set of design and implementation strategies.

3 PLACELESS DOCUMENTS DESIGN
Before we can discuss the challenges and opportunities arising from the incorporation of
properties into document management systems, we need to set some context. This section
the conceptual design of the Placeless Documents system and shows how active propertie
the design of the full system. The design presented here is embodied in our current Placele
uments implementation.

3.1 Personal and Universal Properties
Most documents that are of any interest have more readers than writers, or are interesting to
individuals. The different parties who interact with a document may have different opinions
the document, and may stand in different relationships to it. We call the users of the documen
sumers”, and our goal is to support consumer-oriented document management. Our do
model, then, must accommodate the needs of multiple document consumers.

Placeless Documents supports two sorts of document objects, called base documents and document
references, illustrated in figure 1. A base document contains document content, while a docu
reference contains a pointer to a base document. Both base documents and document re
have a set of document properties; we say that the properties are “attached” to the docume

Document references combine their own properties with the properties attached to the bas
ment. We call the properties attached to the base document universal properties, while those
attached to a document reference are personal properties. For example, imagine that Jonathan hol
a reference to a document written and owned by Fiona. Features that are universally true of t
ument, such as its format and its length, are universal properties; they are attached to t
document, held by Fiona, and so can be seen (access control allowing) by anyone who hold
erence to that document. On the other hand, Jonathan’s annotations to the document are es
personal assertions about the document; if he has marked it as being “interesting”, that may n
for other people. So, those properties are personal properties attached to Jonathan’s docum

FIGURE 1: Consumer-oriented properties. Universal properties are associated with the base document and
can be seen by all users; personal properties on a document reference are seen only by holder of the

reference, by default. So Jonathan sees six properties, while Paul sees four and Mark sees five.

Jonathan

Fiona

Mark

Base document

Document references

Paul
8

ument,

its doc-
ould be

ierarchy
g state
n” to

le
ms can

certain
t active
s, and

ccur, or
n. By

rs of the

andard
 move

ether.

n early
nsion
ting to
ctions
to the
e

ts

e third
lec-

s of

; how-
g them
erence. They will not affect the view of other people holding references to Fiona’s base doc
unless someone explicitly asks, “what does Jonathan think about this?”

The owner of a base document can also hold a reference to that same document. This perm
ument owners to use the same separation of universal and personal properties that w
available to other users.

3.2 Static and Active Properties
Document properties have names and values. The property namespace is organised in a h
for each document; this means that any property can use local sub-properties for recordin
information. For example, the “backup” property might use the sub-property “backup.lastru
record the time when it last ran.

A property values can be any serialized Java object2. So, although most user properties hold simp
values such as strings, or slightly more complicated ones such as dates, application progra
use properties to record complex data structures.

In addition to their name and value, active properties include code that is executed when
operations are performed on the documents to which they are attached. The operations tha
properties can monitor include adding a document to a collection, adding or deleting propertie
reading the content. Active properties can intercept these operations before or after they o
contribute to the execution of the action, according to the needs of the particular applicatio
attaching active properties to a document, users can tailor and augment the default behavio
system.

3.3 Collections
In traditional systems, the logical structure of the document space is provided through the st
hierarchical structure of the file system. The Placeless Documents design is an attempt to
away from that standard model, but it must still support the ability to group documents tog
Our design allows users to group documents into collections.

The Placeless Documents system uses the “fluid collection” design that we developed in a
prototype called “Presto” [Dourish et al., 1999a]. The fluid collection design balances the te
between wanting to be able to provide “live” collections backed by database queries and wan
make these collections manipulable by users. In a purely dynamic design in which all colle
were simply queries, manipulating the contents would be problematic since modifications
collection would be lost when the query was next evaluated.3 Our goal was to be able to combin
liveness with manipulability.

Fluid collections have three components. The first is a query over document properties; documen
matching the query are members of the collection. The second is the inclusion list, which identifies
specific documents to be included in the collection even if they do not match the query. Th
component is the exclusion list, which identifies specific documents to be excluded from the col

2. Placeless Documents is written entirely in Java. At the time of writing, it comprises approximately 100000 line
code written in Java 1.2, using JFC, JNDI, JDBC and RMI.

3. One solution to this problem would be to let users manipulate the query indirectly by manipulating the content
ever, investigations suggest that even forming valid queries is often a difficult task for end users, and manipulatin
indirectly would be doubly difficult (Greene et al., 1990).
9

, if the
n the

ead its

 query
 and
sults of
tion and

her, can
dividual
s” are
llection-
h con-
atures

, imple-
ted and
l world
ge and
sers and

tem does
ents,”

ugh the

operty
e, one
 host
d fur-
ustom
never a

cument
rve con-
porting

 in an

system.
storage
range
tion even if they do match the query. Any of these components can be empty. For instance
inclusion and exclusion lists are empty, then the collection is defined entirely by the query. O
other hand, if the query is empty, then the collection has no dynamic component, and inst
membership is defined statically by the elements of the inclusion list.

The fluid collection design thus combines the benefits of dynamic and static collections. The
component allows collections to be defined dynamically, and their membership will grow
shrink as the document property space is manipulated. The two list components allow the re
the query to be modified directly, so that users can add and remove documents to the collec
have their modifications be stable over time.

Collections are, themselves, a form of document; so collections can be nested inside each ot
be assigned both active and static properties, can be organised according to the needs of in
users, and so on. In fact, in our current implementation, “collection-ness” and “content-nes
two independent aspects of a document. Documents can have neither content-ness nor co
ness, in which case they are “empty documents,” essentially just collections of properties. Wit
tent features added, a document becomes a “content document”, while with collection fe
added it becomes a “collection document.”

Clearly, a fourth document type is available, that have both content-ness and collection-ness
menting methods that access content and also methods that allow their membership to be lis
changed. We call these “combined documents.” Examples of combined documents in the rea
are ZIP files, JAR files, mail messages with MIME attachments and other formats that packa
encapsulate other files. When these are implemented as combined documents, Placeless u
applications can access them as raw bit streams or as structured collections, as necessary.

3.4 Interfaces Above and Below
Although users see base documents as containing content, the Placeless Documents sys
not, itself, store document content. Rather than being “yet another place to put your docum
the Placeless Documents system integrates and unifies existing document repositories thro
use of what we call “content providers”.

Every content document has a special active property called its content provider. This pr
knows how to read and write content from the underlying repository that holds it. For exampl
class of content provider might know how to read and write to normal file system files on the
platform; another might know how to retrieve documents stored on the World Wide Web; an
ther content providers might retrieve the document content from an IMAP server or a c
database. The Placeless Documents system invokes the document’s content provider whe
request is made for the document content; the content provider contacts the relevant do
repository and serves the document’s content for Placeless. Some content providers may se
tent that does not reside on any repository, but is instead generated dynamically, thereby sup
dynamic, virtual documents. Most documents, however, have “real” static content stored
underlying repository.

The content provider mechanism provides a variety of benefits in the Placeless Documents
One obvious benefit is that the system remains independent of whatever local document
facilities are available. Another is that it applies our principle of uniform interaction across the
10

ns in
different
rated

ws for

 system
 other
ns that

sisting
 the next
re also

tions
plies
evel-

ate over
 of the
S (Net-
 remote
tem to
ns can
ns such
gh they
 Docu-
of document repositories already in everyday use. A third benefit is that it allows collectio
Placeless Documents to be heterogeneous, containing documents that are actually stored in
repositories. A fourth is that content providers allow dynamic document content to be integ
seamlessly into the Placeless Documents framework. Finally, using content providers allo
easy extensibility to new document repositories or custom storage systems.

Content providers are a mechanism to get document content into the Placeless Documents
from underlying document repositories, but this is only half of the content path problem. The
half is offering document content and Placeless Documents facilities are offered to applicatio
sit on top of the Placeless Documents infrastructure.

For developers writing new applications, the Placeless Documents system offers an API con
of Java classes structured in terms of documents, collections and properties. As discussed in
section, applications may, in fact, be decomposed into a number of active properties, which a
written in Java.

However, our goal is not simply to offer an infrastructure for the development of new applica
but also to provide an integrated platform for interacting with existing documents, which im
interacting with existing document applications. Existing applications, of course, were not d
oped to use Placeless’s document model; fore the most part, they were designed to oper
normal file systems. So, to support these applications, we provide a file system layer on top
Placeless Documents infrastructure. The Placeless Documents system implements an NF
work File System) server, providing access to stored documents through the standard NFS
file access protocol [Sun Microsystems, 1989]. This permits the Placeless Documents sys
appear as part of the standard file system of a client computer, so that file-oriented applicatio
access documents stored in Placeless. Using this mechanism, standard “legacy” applicatio
as Microsoft Word or Adobe Photoshop can operate on Placeless Documents even thou
know nothing about the Placeless Documents APIs and functionality. Of course, Placeless

FIGURE 2: The Placeless Documents system integrates content from multiple repositories and makes it
available through a number of different interfaces. A native Java API supports Placeless-aware clients, the

Java Streams interface supports Java Beans, and a custom NFS implementation supports legacy
applications that expect to interact with a filesystem.

Native applications
Legacy applications

Java interfaces

NFS Server

Filesystem

IMAP Database

Web
DMS

Placeless Documents core
11

cument
ecific

ructure
making

red by
nd doc-
r other

in the
 active
t basis.
e sig-

nvolved
e prop-
es.

ponding
s each

erifier
rained,

-
eration.
s, per-
perties,
ister
oc-
 of the
ecryp-
d by a

related
tion for
ifier to
ments and traditional file systems have different semantics and different approaches to do
identity, which can cause some problems in trying to effect this integration. We discuss sp
problems and solutions elsewhere [Dourish et al., 1999a].

The overall structure of the system is illustrated in figure 2. The Placeless Documents infrast
essentially acts as a distributed switch for document content, unifying disparate sources and
them seamlessly available within a single framework.

4 USING ACTIVE PROPERTIES
A principal focus of our research into Placeless Documents has been the opportunities offe
active properties. Active properties offer a means for users to configure, customize and exte
ument system functionality using the same uniform interaction mechanism that they use fo
document system interactions.

Active properties carry code with them. This code allows an active property to be involved
execution of document operations on the documents to which the property is attached. Using
properties, then, users can control the behavior of the system on a document-by-documen
The functionality of multiple properties can be combined on a single document. The interfac
nature of the active property code indicates to the system which events the code should be i
in. The Placeless core engine provides a property dispatch mechanism which invokes activ
erty code during document operations, such as reading or writing content or adding properti

4.1 Active Property Dispatch
Three sorts of active property code can be associated with each document operation, corres
to three forms of involvement in the document operation itself. The dispatch engine processe
active property type separately.

When an operation is invoked on a document, the dispatcher first calls all relevant verifier proper-
ties for that operation. Verifier properties are intended to validate document operations; any v
property can veto a document operation. Verifier operations can be used to perform fine-g
document-specific access control.

If all the verifiers accept the operation, then the registered performer properties are called. Per
former properties are those responsible for actually carrying out the requested document op
Since different properties added to the document might affect an operation in different way
formers have to be composed. For example, consider a document that has two pro
compressed and encrypted, each of which transforms document content. These properties reg
performer operations for the readContent operation, which constructs a stream for reading the d
ument content. Their performer properties construct a stack of filter streams, each built on top
previous one, each performing its own operation (compression/decompression, encryption/d
tion) and combining to achieve the desired functionality. Performer sequencing is determine
global order on document properties, which can be controlled by users.

Finally, once an operation has been performed, all relevant notifier properties are called. Notifier
properties have no return value; they are intended for updating state, logging activity, and
functions. For example, a property that maintained an access log might register a notifier ac
document operations; or a property that provided document summarization might use a not
be informed when document content has been changed.
12

ows an
 main-

on of

 both
roperty
From
a func-

, active
es can
e oper-

ty. The
amed

ual doc-

e to
which

hey call
Naturally, an active property may be interested in more than a single event; the interface all
active property to become involved in a variety of operations. For example, a property that
tains a history of writes to the document may want to be notified on calls to addMember,
writeContent , addProperty , setProperty and deleteProperty , since these all constitute “writ-
ing” operations of one sort or another. Active properties can implement any combinati
verifiers, performers and notifiers.

The separation into verifiers, performers and notifiers simplifies the active property facility for
writing active properties and dispatching the operations. From the perspective of the active p
writer, it allows programmers to focus specifically on the operations they want to perform.
the perspective of the dispatch mechanism, it simplifies property ordering issues by making
tional separation between different phases of property execution.

4.2 Extending Document Functionality
By associating new functionality with the core operations supported by the document system
properties can specialize the behavior of documents in different situations. Active properti
also extend the behavior of the system to incorporate new functionality that is outside the cor
ations through a “delegation” mechanism.

One of the core operations that all documents support is getDelegateFor . The primary parameter
to this method is an “interface” or abstract class signature, describing some Java functionali
getDelegateFor operation returns a delegate object for the document that supports the n
interface.

For example, suppose we want to extend the system to support language translation for text
uments. Although all our documents support the core operation readContent , there is no support
in the core document interface for the methods readFrenchContent or readGermanContent . While
language translation is not the sort of facility built directly into our infrastructure, we would lik
be able to integrate it into our system by adding the “Translation” property to a document
extends that document’s functionality with this new behavior.

With the delegation mechanism, we can achieve this by defining a new interface called Translat-

ableDocument , which contains the methods readFrenchContent and readGermanContent . When
client programs want to be able to use the extended translation operations on a document, t
the getDelegateFor operation to ask for a delegate for the TranslatableDocument interface. The
object that is returned from this call is one that directly supports the TranslatableDocument inter-

getDelegateFor()

readFrenchContent()

Delegate object

FIGURE 3: The delegate mechanism allows an active property to extend a document’s interface via a proxy
object that delegates new methods for the document.
13

sions
ly used
r would
me, this
opers
tended
ion code.

as a sub-
ckages
nction-
y the
 them.
nifest
, active

lity to
comes
an con-
 single
pendent

ried out

tomary
is pro-
letion

rder to
 entirely
priate
 func-
rty for
doc-

pleted
. If the

orm to

e docu-
ther doc-
be resolved
sms and
face and acts as a translation delegate for the document. A call to readFrenchContent on the
delegate operation returns the original document content translated into French4. The relationship
between the document, the active property and the delegate object is illustrated in figure 3.

The delegation mechanism permits applications to incorporate arbitrary functionality exten
into the Placeless Documents system. At the same time, it also retains type-safety. If we simp
a mechanism such as string identifiers to name and use document extensions, the compile
not be able to ensure type agreement, and so run-time errors could result; at the same ti
would provide poor integration with the Java programming model that application devel
would use. Instead, delegation lets programs deal with objects that directly support the ex
operations as pure Java methods, so that the compiler can ensure type agreement in extens

4.3 Structuring Applications with Active Properties
Placeless Documents is a document management infrastructure, and so is intended to act
strate supporting a variety of applications. As outlined earlier, we provide a set of Java pa
and classes allowing application developers to write applications that depend on the core fu
ality offered by the Placeless system. However, the active property functionality provided b
Placeless Documents infrastructure does not simply support applications, but transforms
Active properties introduce a new form of application structure. Since properties are ma
directly at the programming level, they can also be created and manipulated in program code
properties can be added to documents directly by applications.

Allowing applications to add active properties to documents essentially gives them the abi
delegate application functions to the documents themselves. The application functionality be
distributed, in two senses. First, it can be associated with the documents themselves rather th
centrated in the application, so that it is distributed across the whole system rather than a
server or application site. Second, these functions can be invoked as a consequence of inde
action on the documents rather than action controlled by the application, so that they are car
asynchronously, in direct response to document activity.

For example, consider an application to route forms through a business process. In the cus
approach, the document routing application would have to be running in order to manage th
cess; either users would operate within the system, filling out forms and indicating the comp
of various tasks, or the application would be invoked when the tasks were completed in o
move to the next stage. In the Placeless Documents system, however, this can be achieved
with active properties [LaMarca et al., 1999]. The application is responsible for tagging appro
documents with active properties, and then the properties will carry out the document routing
tions. For example, the routing application could operate by attaching a notifier active prope
the closeOutputStream operation. This operation is called when the user finishes writing the
ument. At this point, the active property code can check that the document has been com
correctly. If it has not, then the user can be warned and asked to complete the form correctly
form is complete, then the active property can use the information it contains to route the f

4. This raises important questions about document identity. Are translations in English and French really the sam
ment? What happens when I make a copy the document — is my copy in English or French? Do references to o
uments in the property values cause them to be copied too? Our current approach addresses these as issues to
on an application by application basis, until we have developed more experience with the most effective mechani
those most natural to users.
14

roperty
ments
equence
 applica-
nd, the

plica-
ment.

motiva-
ection,

 distri-
ultiple
 and the
sence of

ieve and
celess
ads; it

gistered
ms

re. This
ose or
 three
 in the
 forth.
 as for
 platform
into the

ple-
ies to
, imple-
ill best
e.

 called
s the
ls.
 belongs

 operat-
the next relevant person. This routing application capitalizes on both features of the active p
application structure. First, the application processing is directly connected to the docu
involved, rather than the application that operates on those documents. In this case, the cons
is that any editor at all can be used to process the form; the user does not have to use the
tion’s own form editor, and, indeed, users do not even have to use the same editor. Seco
activity of the application is directly connected to activity over the documents, making the ap
tion more responsive to user action and supporting the conceptual model of an “active” docu

5 SYSTEM ARCHITECTURE
So far, we have considered Placeless Documents on an abstract level. We introduced the
tions for our approach, and described our extensions to a simple static property model. This s
discusses the system in more detail. In particular, it is concerned with two topics. The first is
bution and the question of how the functionality of the system can be distributed between m
components to achieve reliability and responsiveness. The second is the kernel architecture
question of how a document management system can be made fast and scalable in the pre
active properties.

5.1 Distribution Architecture
The Placeless Documents system is intended to be the primary means for users to store, retr
interact with their documents. This introduces a range of important practical requirements. Pla
must be highly reliable and available, even in the presence of network outages and overlo
must scale well enough to support real environments (for example, around 4000 hosts are re
in the domain parc.xerox.com); and it must operate in a world of firewalls, laptops and mode
as well as in a world of highly-connected desktop PCs.

To meet these demands, we designed Placeless around a flexible distributed architectu
architecture supports a variety of distribution and replication schemes, but does not imp
require any; it provides a framework for mechanism but does not specify policy. This supports
goals. First, the design makes it easy for users and different implementations to participate
Placeless system, without worrying about server configurations, replication policies, and so
The sorts of policies required for a large environment like PARC are unlikely to be the same
running between a few machines at home. Second, the design supports using Placeless as a
for the development of new distribution schemes. New schemes can be easily incorporated
existing Placeless framework and will interoperate directly with existing client and server im
mentations. Third, the design enables us to tailor the distribution and replication polic
emergent patterns of document access. Since active properties are a new way of designing
menting and deploying document services, we can not be sure in advance which policies w
suit this new environment, so our design is flexible enough to respond to patterns of real us

The primary components around which the Placeless distribution model is organised are
spaces and kernels. A kernel is responsible for managing some set of documents, and provide
core document management functionality.5 All operations on documents are performed in kerne
Together, one or more kernels serve a logical set of documents called a space (each kernel

5. So, the name “kernel” denotes a central role within our architecture; it does not denote any relationship to the
ing system kernel. Our implementation is entirely in user space.
15

ividual
ace, my
e of us.

 Differ-
ibution
 only a
umber
opera-
t also

e kernel
ry doc-
will be
kernel
rnel as

 Space
ponsible
 doc-
ace but
space is
nel to a
ns.

gle
s if the
e gate-

 a different
 manag-
to exactly one space). Spaces are associated with principals; typically, they correspond to ind
users, although they can also correspond to groups. So, in addition to my own personal sp
project group might also have a space for documents that are not owned by any particular on6

Spaces are given complete autonomy for the distribution of documents across their kernels.
ent spaces (that is, different implementations of the Space object) can provide different distr
policies within a single running Placeless system. The simplest Space implementation has
single kernel that operates on documents directly. A more complex Space might maintain a n
of different kernels, and divide documents between them, balancing the load of document
tions across different kernel processes (and, potentially, different hosts). A Space migh
replicate documents across multiple kernels, to maintain high availability.

Spaces can also manage kernels that are not symmetric. For instance, a user might want on
on their laptop and another on their desktop machine. The desktop machine will be the prima
ument repository, but some documents should be maintained on my laptop too, so they
available on trips away from the office. This Space might only copy documents to the laptop
on the basis of an explicit request (through a specific property), and maintain the desktop ke
the default and master kernel for all document operations.

Although the document operations are actually performed by kernels, they are invoked on
objects, which subsequently delegate to kernels. A gatekeeper is a Space object that is res
for deciding which kernel will handle an individual document request, as shown in figure 4. All
ument operations are performed in terms of abstract document identifiers, which name a sp
not a kernel. When a document operation is performed, the gatekeeper for the document’s
contacted, and is given the document’s identifier. The object that is returned is a direct chan
document in a kernel; the space is, in most cases, not involved in further document operatio

Some operations, of course, must operate across kernels rather than being mapped onto a sin
kernel or document. Queries, for instance, may match documents stored in different kernel
document space is distributed. Rather than delegating the search to a particular kernel, th

6. Since document identifiers are unique across all spaces, the separation of personal and universal properties
(section3.1) also operates across spaces. Since a user can have personal annotations on documents that are in
space, organizing spaces by user is not strictly necessary from a conceptual point of view, although it is useful in
ing protection domains.

FIGURE 4: Documents are managed by kernels, which are in turn organised within spaces. The gatekeeper
is responsible for fielding document operation requests for a space and translating them into references to

documents, implementing whatever distribution or replication policy is appropriate.

A User Space

Kernel Kernel

Kernel

Gatekeeper
16

embling

oes not
 needs
 patterns
pressed

tes to a
a laptop.
-avail-

ties can
 is not

ork of
k as

, docu-
fferent
guments
ps and
e prob-

999].

lessly.
h can
 a wide

 cach-
nt-side
ument
, then
ument
 remote
e that
er
ions.

here an
kernel;
ormally
pplica-
upport
 the
keeper is responsible for distributing search queries across all the kernels it manages and ass
the results.

Although a space is intended to manage documents across kernels autonomously, that d
imply that it receives no guidance from users. After all, a user is often better able to express
and expected uses than a system is at guessing or extrapolating from current use. Expected
of use or current needs are, of course, simply properties of the document, and so can be ex
by attaching document properties. For example, a property that monitors all writes and upda
document can ensure that an up-to-date copy is maintained on a specific kernel, such as on
In similar ways, active properties can ensure that a document is always maintained on a high
ability server, should be replicated, must not be replicated, and so on. In other words, proper
be used to control the distribution policy and hence to achieve different levels of service. This
the first use of document properties to control quality of service (see, for example, the w
Borowsky et al. [1997]), but it offers this level of control within the same uniform framewor
other aspects of document management.

5.1.1 Caching
In a fully distributed implementation, each component of the system (space objects, kernels
ments, etc.) can potentially be remote to an application, residing on a different host or in a di
address space. The use of public-key certificates and other security tokens means that the ar
to the remote calls may be large. Since we operate in an environment that includes lapto
mobile devices, components may become disconnected from the network. In the face of thes
lems, we still want our system to be responsive and stable.

We introduce a multi-level caching approach for all potentially remote objects [de Lara et al., 1
The core components of the system, such as documents, are defined not as classes but as interfaces

that objects may implement. This allows multiple different implementations to be used seam
Any given object may be implemented by a direct local object or by some form of proxy, whic
stand for a remote object without any changes to an application. Using proxies, we can allow
variety of local/remote configurations, but the other problems still remain.

Allowing proxies to perform various levels of caching can overcome these problems. Remote
ing can be achieved by introducing proxy peers; server-side objects that correspond to a clie
proxy. For instance, consider an application making use of a document object. If the doc
object is local, then it might hold the document object directly; but if the document is remote
it might instead hold a document proxy. The document proxy implements the standard doc
interface, so that it is indistinguishable to the application, but delegates these operations to a
object on the server side, which is the proxy peer for this particular document proxy. Sinc
proxy peer corresponds only to this particular instance of the document, the proxy and proxy pe
can cache information to reduce network traffic, such as the credentials of document operat

Using document proxies can also help make the system more stable. Consider the case w
application holds a document proxy object, which corresponds to a document on a particular
in this case, a kernel on a laptop. When the laptop is disconnected, the document would n
become unavailable to applications using it. However, in the presence of replication, the a
tion’s operation could conceivably be completed against another copy of the document. To s
this, our proxies can also re-bind a document pointer to a kernel document object by detecting
17

ment a

ce and

f docu-
ueries.

scribed

t pro-
kernel
perfor-
ber of
eless,

ve meta-
ponse,

 queries
n intro-
rations
alues,
 Testing
 kernel,

rnel”.
and the
/refine
se what

 a
 we can
etween
ork of
r or not
L and
‘tell me
l doc-
ts
ose

ainst Ora-
disconnection of the original kernel and going back to the gatekeeper to request the docu
second time. Rebinding allows applications to operate robustly in a fluid environment.

In summary, our caching architecture supports a range of effects to improve performan
robustness and reduce network traffic and client/server communication.

5.2 Kernel Architecture
The Placeless Documents kernel is the basic component responsible for managing a set o
ments, recording their properties, performing basic document operations and responding to q
The kernel needs to be both fast and scalable (although our distribution architecture, de
above, also provides for scalability).

With only static properties, an effective implementation is reasonably straightforward. Our firs
totype system provided no support for active properties, and so could adopt a fairly simple
design, keeping document objects in memory along with an index designed for fast query
mance [Dourish et al., 1999a]. However, the inclusion of active properties introduces a num
problems into the design of the kernel. Our prototype solution was not appropriate for Plac
which requires greater scalability than an in-core approach would allow.

The current Placeless Documents kernel, then, uses a relational database as the primary li
data store.7 The kernel maintains a fixed size in-core cache of document objects for faster res
but the database stores the “true” copy.

This design should allow queries over a kernel’s documents to be transformed into database
in SQL and performed directly in the database. However, the presence of active properties ca
duce a problem. Our design made retrieving a property’s value one of the basic document ope
that active properties can override. This opens up the possibility of properties with dynamic v
calculated on-the-fly as they are read. For dynamic values, the database’s index is useless.
the property value involves running real code, and that code can only be run in the Placeless
not in the database.

When we first encountered this problem, our solution was what we call the “cache/refine ke
The cache/refine kernel distributes the work of the query between the relational database
kernel itself, attempting to exploit the areas where each is powerful. The basis of the cache
approach is that, although we cannot always be sure when we store a property in the databa
its value will be when we read it next, we doknow two things. The first is that we know there is
property with that name, since properties cannot change their names. The second is that
know whether or not that property has a static value, because we can tell the difference b
active and static properties. The combination of these features allows us to distribute the w
evaluating a query. When a property is stored in the database, it is marked to record whethe
its value is potentially dynamic. Later, when a query is processed, it is transformed into SQ
handed to the database. However, the query is generalized at this point; instead of asking,
all documents where property “important” is equal to “true”’, the database is asked, ‘tell me al
uments where property “important” is possibly equal to “true.”’ This set includes those documen
in which the value of property “important” is statically defined with value “true”, along with th

7. Placeless uses the JDBC interface to access a variety of databases; we currently run our implementations ag
cle and MySQL.
18

ed set
nts with
 In this
 well as

s of the
 appli-
 costly.
s on the
ueries.
kernel

sic pro-
e call
umber

rn. The
tials and
rt of the

tation
 a vari-
es that
el. As a
 be pre-

ration is
he given
se some

so under

this by
autho-
 public
eration
fers.
 the cre-
entials
ls. The
rations
documents that have a property called “important” with a dynamic value. Once this generaliz
has been returned from the database, the kernel itself is responsible for testing the docume
dynamic property values and eliminating those which should not be returned from the query.
way, we can exploit the scalability and fast index-based lookup provided by the database as
the dynamic values provided by kernel-based active properties.

As our experience with the system grew, however, we came to reconsider particular aspect
design such as the active properties that could compute their own values dynamically. Initial
cation experience suggested that this feature was only occasionally useful, but was always
The current Placeless Documents implementation foregoes the cache/refine kernel and relie
delegate mechanism for applications requiring, enabling more aggressive caching for faster q
The issues of dynamic data and the distribution of indexing and caching functionality across
and database are ones that our ongoing implementation efforts continue to explore.

5.3 The Placeless Object
Kernels, spaces and proxies are features of the architecture but do not form part of the ba
gramming model. To act as a unifying point of entry into the system, we introduce an entity w
“the Placeless object”. This object acts as a single point of contact for an application or for a n
of applications sharing an address space, similar to Gamma et al.’s [1995] “Facade” patte
Placeless object is responsible for contacting spaces, finding gatekeepers, managing creden
various other functions that are necessary for architectural coherence but need not form pa
programming model at the top level.

5.4 Security Model
The combination of active properties, document references and a distributed implemen
unavoidably implies that document operations may cause user code to be run dynamically on
ety of possible hosts, including user workstations and servers. In order to deal with the issu
arise in this scenario, our architecture has been designed to support a strong security mod
purely practical concern, a strong security model is an absolute necessity before anyone can
pared to trust their documents or their workstations to the Placeless Documents system.

Placeless’s security model is based on secure credentials. At the kernel level, all API calls require
credentials as an argument. Credentials identify the user under whose authorization the ope
being carried out. The kernel uses credentials to ensure that a user has authority to perform t
operation, either because the owner of the document has authorized the operation, or becau
other user (or chain of users), authorized to delegate permission for the operation, has done
some currently valid set of conditions.

In order for this scheme to be effective, credentials must be unforgeable. We can achieve
using public key certificates as credentials. Public key certificates are digitally signed and
rized, so that they can be trusted as secure identifications of the originating user. However,
key certificates can be large, and if they are used in a capability-passing style, a single op
might involve multiple certificates; they would quickly dwarf actual content on network trans
To address this, we exploit the caching model described earlier. Rather than having to pass
dentials over the network for every single document operation, users can present their cred
once to create a server-side proxy for the document object which encodes their credentia
server returns a unique handle for the credentialled object to the originating user. Further ope
19

oxy will

ents sys-
ument
sign, we

s active
nt ser-

y, rather
ation or
twork-
uments
 service

ndivid-
active
x-and-

t trans-
uage
tation
ntent
een the
rmats.
ument;
ntent
on this document handle need not pass credentials across the network; the server-side pr
introduce the credentials into the local call in the kernel (as shown in figure 5).

6 DELIVERING DOCUMENT SERVICES WITH ACTIVE PROPERTIES
The preceding sections have introduced the basic conceptual model of the Placeless Docum
tem, and explored the architectural implications of active properties as a means for doc
management. Now that we have seen how active properties can be supported in a system de
focus on how they can be used in document applications.

One important role active properties can perform is the delivery of document services. Just a
properties result in a new model for application structure, they can also transform docume
vices. This transformation takes place in two ways.

First, property-based document services are centered on the document and document activit
than on a separate application. To invoke a document service such as translation, summariz
format conversion in a traditional model, users must either download their document to a ne
based service, or fire up the relevant application to provide that service. In the Placeless Doc
approach, they can operate directly on the document; the properties to provide the desired
are attached to the document and are invoked by operations over the document itself.

Second, document services are “componentized.” Individual properties can be attached to i
ual documents, operated on individually, and composed directly at the site of activity. The
property mechanism sets up a framework for properties to interact with each other and “mi
match” coherently under user control.

6.1 Content Transformation
One sort of document service that can be provided easily through an active property is conten
formation. Content transformation can take different forms. For example, automatic lang
translation of textual material could be one form of content transformation; or automatic anno
of document content with information about the document’s history might be another. Co
transformation can also affect the basic storage format; documents might be converted betw
formats supported by different word processors, for example, or between different image fo
Finally, content transformation also includes those transformations that add value to the doc
for example, an encryption/decryption filter can be implemented as a form of conditional co
transformation (from an encrypted form on disk to a decrypted form on the user’s screen).

User

Kernel

User

Kernel

FIGURE 5: Reducing network traffic by using credentialled objects. Instead of passing secure credentials on
every call, users can obtain a unique proxy object, which wraps their credentials on the server side.
20

mecha-
ecific
nt trans-

 prop-
 allows
ntent
mple,

he user.
that the
n send

, pro-

reden-
” model
stem’s
alidated.

rt of the
uppose
all fee.

all sum-
.

erver
alidated
 around

ation”
ser
nt; but
ment.
eated. In
 travels
ecurely

n give a
ay the
other
rties
We discussed earlier how content transformation could be achieved using the delegation
nism. However, this mechanism would only work with applications that understood the sp
semantics of the delegated operations, and knew to call them. We can also integrate conte
formation directly into the normal reading and writing of documents.

This sort of content transformation can be achieved easily with active properties since active
erties can get involved in the construction of input and output streams. The Java I/O model
streams to be “layered”, in which different classes can perform “filtering” operations on the co
to be read or written. By carrying code to take part in the creation of an input stream, for exa
an active property can insert a filter that transforms the document content before it reaches t
This filter could be used for content transformation such as language translation. The code
active property carries will be called directly as a result of read operations, at which point it ca
the content to a network-based service or perform the service itself.

6.2 Access Control and Digital Property Rights
The use of verifier properties, which are offered the opportunity to veto specific operations
vides an opportunity to perform creative forms of access control.

All operations are validated against the credentials of the user invoking the operation; since c
tials can be handed around between users, Placeless Documents can support a “capability
in which rights are first-class objects in the system. This mechanism is the basis of the sy
security model and ensures that identities and access rights can be reliably and accurately v

However, since arbitrary code can be encapsulated in an active property and executed as pa
operation verification process, more complicated solutions are also possible. For instance, s
Jonathan has a document that he wishes to make widely available for the payment of a sm
So that people can find out whether they are interested, he might allow them access to a sm
mary of the document but restrict access to the full content until they have made a payment

He can achieve this with active properties by writing a verifier property that will contact his s
and check the credentials of the calling user to see whether or not they have paid and been v
for access to the document. When this property is attached to the summary, it can be handed
and checked by people, but each read operation will be dynamically validated.

However, a more interesting solution comes from taking a leaf out of the “content transform
book. Jonathan’s active property could transform the content depending on whether or not the u
has paid the fee for reading the document. If they have paid, then they receive the full conte
if not, the content will be replaced with the summary and an advertisement for the full docu
This can be managed because his code is called every time a document input stream is cr
fact, there are other advantages too. Since the property is attached to the document, it also
around with the document when the document is copied, emailed, etc. So the document can s
pass from one person to another, and be copied and distributed. If someone likes it, they ca
copy to a friend, but that friend will only see the summary until they contact the source to p
fee. In order to avoid circumvention of this scheme, this active property would intercept an
operation—the operation of trying to remove this property from the document! Active prope
can be made active enough to be tamper-proof8.
21

ut also
ument

ve prop-
ple, to

 user-

t trans-
ment
y given

ons;
operties,
es. The
invoked
operties
rdina-

catego-
nts are
r docu-

a year,
ns on
 and
TTP,
agues,

appli-
and we
nts and

as have
s well

 Place-
t have

l never
 contents
e if it can
the
Active properties, then, not only simplify document use and management by end-users, b
assist developers by supporting a new model for the encapsulation and delivery of doc
services.

6.3 User-Specific Active Properties
Placeless Documents handles active and static properties seamlessly. This means that acti
erties have names and values, just like static properties; their values can be used, for exam
parameterize their behavior. In addition, just like static properties, active properties are
specific.

Consider the document translation active property described earlier in the section on conten
formation. The purpose of the translation property was to effect a transformation of docu
content for use by the consumer of the document. So, the translation that is appropriate at an
moment depends on who the consumer is. Different consumers need different transformati
some people need the content translated into French, into Spanish, etc. Just as with static pr
this is achieved by using document references to capture user-specific document properti
properties recorded by document references can be active as well as static, and they will be
on relevant operations on the document reference. This allows each user to attach active pr
that customize the document system behavior to their own needs, while still maintaining coo
tion through the base document content.

We described earlier the way that user-specific static properties allow users to organize and
rize documents according to their own specific needs, irrespective of how those docume
organised by others. User-specific active properties give users the same flexible control ove
ment services and active behavior, moving computation closer to document consumers.

7 EXPERIENCES AND OPEN ISSUES
At the time of writing, our Placeless Documents infrastructure has been operational for over
and in daily use for around nine months. Our implementation is built entirely in Java 2, and ru
a variety of platforms and environments, including PCs under Windows NT and Linux,
SPARCs under Solaris. It supports a variety of protocols for document access, including H
FTP, NFS and IMAP. It supports a range of applications developed by ourselves and our colle
including workgroup document corpus management, email, workflow and mobile document
cations. Interactive response is fast enough to support novel direct-manipulation interfaces,
regularly operate with personal document spaces numbering tens of thousands of docume
hundreds of thousands of properties.

In designing, developing and implementing the Placeless Document system, a number of are
been left open. These may be issues for which we simply do not yet understand the problem
enough to make an effective design decision, or areas that we explicitly wish to explore using
less Documents as an infrastructure. Our early experiences with application developmen
highlighted others.

8. An example of this is a property we call “Immutable.” Immutable stands as a guarantee that the document wil
change. For example, when a manager signs a purchase authorization, the Immutable property ensures that the
of the purchase order cannot be changed over her signature. The Immutable property fails to make this guarante
be removed; so it uses a verifier for the deleteProperty operation that ensures that not only the content but also
properties (including the property of being Immutable) are immutable.
22

built on
appli-
 the
ication
 appli-
 duality
rouping
ta, link-

ument
 not

tomized
 both
up col-
active
ations
discuss
ctive

tween
s allow
w cli-
vides
ments

uments
t system
te new

e ability
Vista
ctly in
lation
orma-
ased
ularly
 gen-
ument
 Hend-
lanced
alance

perties
 to spec-
cture to
One issue that we have already touched on is the question of the structure of applications
top of Placeless. Active properties, in particular, introduce the opportunity for new models of
cation development by supporting the migration of functionality from an application to
document itself. However, even simple static properties can introduce new models of appl
structure. In another paper [Dourish et al., 1999b], we discuss the experience of developing
cations using static properties. One common observation is that the property model creates a
in the infrastructure; it can act both as a document system (managing access to content, g
documents for inspection, etc.) and a persistent object system (storing and searching metada
ing representational structures, etc.) In one application, a tailorable collaborative doc
repository for a specific work group we have been studying, we explicitly exploit this duality
only to manage a large document collection but also to allow users to create and share cus
views of the structure of that document space. The system can use our infrastructure to store
the documents and the encoded category structure descriptions through which the workgro
laborates. The general question of the nature of “application” in the presence of an
infrastructure is one which we are exploring through the development of a variety of applic
that exploit the features of Placeless Documents; for instance, Edwards and LaMarca [1999]
a set of applications in which application functionality has been devolved to a set of a
properties.

The question of application structure also draws attention to the management of activity be
client and kernel. In Placeless Documents, active properties run in the kernel, while delegate
component functionality to migrate to clients. One common use of active properties is to allo
ents to be informed of kernel-level activity; a recently-added notification mechanism pro
streamlined access to activity information. In developing applications on the Placeless Docu
infrastructure, we are exploring the balance between kernel and client activity.

Another set of open issues concern the level at which the features of the Placeless Doc
system can be exploited by end users. Again, the dual-nature of Placeless as both documen
and object system is relevant here; as well as offering system developers the ability to crea
applications based on a uniform document property paradigm, Placeless also offers users th
to exploit document properties directly to manage their own document collections. The
browser [Dourish et al., 1999a] allows users to manipulate and organize their documents dire
terms of properties, with multiple workspaces for supporting different tasks and direct manipu
of dynamic queries and fluid collections. Other applications focus on ways to incorporate inf
tion that reflects specific document practices in order to control the flexibility that a property-b
approach offers and constrain it in ways that make it more effective for particular tasks, partic
where those tasks involve the coordination of multiple individuals [Dourish et al, 1999c]. More
erally, we are interested in how the multiple parallel organizational schemes allowed by doc
properties can support the fluid nature of everyday document categorization tasks [Harris and
erson, 1999]. The development of open and evolvable information structures must be ba
against the structure within the system itself that is the basis of high performance; the b
between these concerns is an important issue in our current activities.

Third, a number of issues at the infrastructure level also remain to be resolved. Document pro
occupy an area at the intersection of user and system concerns. Properties can be employed
ify user requirements and needs, and these needs can be exploited by the system infrastru
23

can be
d active

e to doc-
 a wide
operties

ber of
nsform
ur cur-
ctive

PIs for
plora-
ers can
objects
ation

e flexi-
 using
 adjust

ir users.
ir docu-
te and

rm over
he con-
uping,
funda-
arison

e
es from
creates
rma-
of a
rce files)
s. Third,
s in a
might
rganize

ation
provide appropriate levels of service. So, for example, document replication and caching
informed by the properties used to express users’ interest and expectations of documents; an
properties can be a means for the dynamic management of infrastructure services in respons
ument activity. As discussed earlier, our architecture has been designed to accommodate
range of replication schemes and styles. We have also begun to explore the use of active pr
to support document content caching [de Lara et al., 1999] to improve responsiveness. A num
features in the Placeless Documents conceptual design, including active properties that tra
content and per-user document properties, introduce new challenges for content caching. O
rent implementation is designed to be highly configurable so that we can explore effe
approaches in the context of our different applications.

Finally, based on early development experiences, we are considering ways to refine the A
application development. A number of possible directions have emerged from our early ex
tions. One issue of particular interest is the use of semi-structured schemas that programm
impose over the property store in order to express invariants and constraints for document
that represent application state. This allows programmers to incorporate higher level inform
and automate some aspects of data management in their applications, without giving up th
bility to create arbitrary new categorizations of documents and to customize their behavior
active properties. In addition, this information may be used at the database level to adaptively
the low level data organization for particular application workloads.

8 CONCLUSIONS
Documents in most systems are organised for the convenience of the systems rather than the
Such systems use strict hierarchies to organize documents, and require users to adapt the
ment practices to the structures that they impose. They make it hard for people to file, loca
share documents. Moreover, they separate documents from the activities that users perfo
them, encapsulated in different applications. The Placeless Documents system introduces t
cept of personalized document properties as a uniform mechanism for organizing, filing, gro
retrieving and manipulating documents and document collections. Using properties as the
mental mechanism for user interaction with documents provides a number of benefits in comp
to traditional hierarchical filing structures.

First, it allows documents to be managed for the document consumer. Since different users can hav
different properties on the same document, the control over the document and its use pass
the document’s author to the many different consumers who may make use of it. Second, it
a single, uniform interaction model for a wide range of information about the document. Info
tion which would otherwise be locked inside different applications (such as the titles
presentation slides, the subject lines of mail messages, and the classes defined by Java sou
can be extracted and brought together in a single space and operated on by common action
it reflects the “multivalent” nature of documents. A single document may be relevant to user
number of different ways, reflecting the different roles it plays and the different tasks users
want to perform. Since any number of properties may be attached to a document, users can o
their documents into multiple cross-cutting organizational structures.

The Placeless Document system is based on uniform interaction, user-specific properties and active
properties. Uniform interaction stresses a single global property space, integrating inform
24

uments
 when
perties
nd con-
cument
work.

 concep-
allenges
e devel-
 to be a

 ways.
ructure,
onality
nd, we
ing can
 to give

is a pow-

search
ehart
trib-
, Tom

 and
HI’92

gers, S.

e See-

997).
tional

ment:
of
from many sources. User-specific properties allows users to organize and control shared doc
in ways that are relevant to them individually. Active properties carry code to be performed
specific operations are carried out on the documents to which they are attached. Active pro
can make documents responsive to the activities over them; they can be used to configure a
trol system services; they can be used to deliver document services seamlessly within the do
management system; and they do all this within the same uniform document property frame

The incorporation of these features into a document management system poses a number of
tual and practical challenges. In this paper, we have described how we addressed these ch
in Placeless Documents, a distributed, user-centric document management system that w
oped as an infrastructure for property-based applications. Placeless Documents is designed
scalable, reliable, distributed platform for document management.

We are currently exploring the consumer-focused active property paradigm in a number of
First, we are developing a range of applications that run on the Placeless Documents infrast
to explore how active properties can be used to structure applications, associating functi
directly with documents and giving users the means to directly configure and control it. Seco
are investigating how infrastructure services such as document replication and content cach
be controlled by active properties. Third, we are exploring how active properties can be used
end users direct control over composable document services.

Our early experiences with Placeless Documents, as users and developers, suggest that it
erful infrastructure for the development of novel document applications.

Acknowledgments

We would like to thank a number of colleagues and collaborators for contributions to the re
described here, including Danny Bobrow, Dan Greene, Mike Spreitzer, Mark Stefik, Dan Swin
and Marvin Theimer. Our interns, Dirk Balfanz, Jon Howell, Eyal de Lara and Minwen Ji, con
uted to the development of our prototype implementation, and early users including Ian Smith
Rodden, Michelle Baldonado and Jacek Gwizdka provided valuable feedback.

References

Ahlberg, C., Williamson, C., and Schneiderman, B. (1992). Dynamic Queries: An Implementation
Evaluation. Proceedings of the ACM Conference on Human Factors in Computing Systems C
(Monterey, CA). New York: ACM.

Barreau, D. and Nardi. B. (1995). Finding and Reminding: File Organization from the Desktop. SIGCHI
Bulletin, 27(3), July.

Bershad, B., Savage, S., Pardyak, P., Sirer, E., Fiuczynski, M., Becker, D., Chalmbers, C., and Eg
(1995). Extensibility and Safety in the SPIN Operating System. Proceedings of the Fifteenth ACM
Symposium on Operating System Principles (Copper Mountain, CO), 267–284. New York: ACM.

Bier, E., Stone, M., Pier, K., Buxton, W., and DeRose, T. (1993). Toolglass and Magic Lenses: Th
Through Interface. Proceedings of SIGGRAPH’93 (Anaheim, CA). New York: ACM.

Borowsky, E., Golding, R., Merchant, A., Schreier, L., Shriver, E., Spasojevic, M., and Wikles, J. (1
Using Attribute-Managed Storage to Achieve Quality of Service. Presented at the Fifth Interna
Workshop on Quality of Service (New York, NY).

Bowker, G. and Star, S. (1994). Knowledge and Infrastructure in International Information Manage
Problems of Classification and Coding. In Bud (ed.), Information Acumen: The Understanding and Use
Knowledge in Modern Business. London: Routledge.
25

n

P.M.,
from
e

re for

 with
ology

ibility
ork

ment

: AI

 Object-

tabase

nce.

.

rk out
e
r

K. and
ics in

e

alent
esda,

dows
Chambers, C. (1992). Object-Oriented Multimethods in Cecil. Proceedings of the European Conference o
Object-Oriented Programming ECOOP’92 (Utrecht, Belgium), 33–56. Berlin: Springer Verlag.

Cody, W.F, Haas, L.M., Niblack, W., Arya, M., Carey, M.J., Fagin, R., Lee, D., Petkovic, D., Schwarz,
Thomas, J., Tork Roth, M., Williams, J.H. and Wimmers, E.L. (1995). Querying Multimedia Data
Multiple Repositories by Content: The Garlic Project. Proceedings of the IFIP 2.6 Third Working Conferenc
on Visual Database Systems VDB-3 (Lausanne, Switzerland). Chapman and Hall.

Dourish, P., Edwards, K., LaMarca, A., and Salisbury, M. (1999a). Presto: An Experimental Architectu
Fluid Interactive Document Spaces. ACM Transactions on Computer-Human Interaction, 6(2).

Dourish, P., Edwards, K., LaMarca, A., and Salisbury, M. (1999b). Uniform Document Interaction
Document Properties. Proceedings of the ACM Symposium on User Interface Software and Techn
UIST’99 (Asheville, NC). New York: ACM.

Dourish, P., Lamping, J. and Rodden, T. (1999c). Building Bridges: Customisation and Mutual Intellig
in Shared Category Management. Proceedings of the International Conference on Supporting Group W
GROUP’99 (Phoenix, AZ). New York: ACM.

Edwards, K. and LaMarca, A. (1999). Balancing Generality and Specificity in Document Manage
Systems. Proceedings of the IFIP Conference on Human-Computer Interaction INTERACT’99 (Edinburgh,
Scotland). Amsterdam: IOP Press.

Freeman, E. and Fertig, S. (1995). Lifestreams: Organising your Electronic Life. AAAI Fall Symposium
Applications in Knowledge Nagivation and Retrieval (Cambridge, MA).

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design Patterns: Elements of Reusable
Oriented Software. Reading, MA: Addison-Wesley.

Giampaolo, D. (1998). Practical File System Design with the Be File System. Morgan Kaufman

Gifford, D., Jouvelot, P., Sheldon, M., and O’Toole, J. (1991). Semantic File Systems. Proceedings of the
Thirteenth ACM Symposium on Operating System Principles (Pacific Grove, CA). New York: ACM.

Greene, S., Devlin, S., Cannata, P. and Gomez, L. (1990). No IFs, ANDs or ORs: A Study of Da
Querying. International Journal of Man-Machine Studies, 32(3), 303–326.

Guy, R. (1990). Implementation of the Ficus Replicated File System. Proc. Summer USENIX Confere

Harris, J. and Henderson, A. (1999). A Better Mythology for System Design. In Proceedings of the ACM
Conference on Human Factors in Computing Systems CHI’99 (Pittsburgh, PA). New York: ACM.

Kim, W. (1990). Object-Oriented Databases: Definition and Research Directions. IEEE Transactions on
Knowledge and Data Engineering, 2(3), 327-341.

Kistler, J., and Satyanarayanan, M. (1992). Disconnected Operation in the Coda File SystemACM
Transactions on Computer Systems. 10(1), 3–25.

LaMarca, A., Edwards, K., Dourish, P., Lamping, J., Smith, I. and Thornton, J. (1999). Taking the Wo
of Workflow: Mechanisms for Document-Centric Collaboration. Proceedings of the European Conferenc
on Computer-Supported Cooperative Work ECSCW’99 (Copenhagen, Denmark). Dordrecht: Kluwe
Academic Publishers.

de Lara, E., Petersen, K., Terry, D., LaMarca, A., Thorton, J., Salisbury, M., Dourish, P., Edwards,
Lamping. J. (1998). Caching Documents with Active Properties. Seventh Workshop on Hot Top
Operating Systems HOTOS-VII.

Mogul, J. (1984). Representing Information about Files. Proceedings of the Fourth International Conferenc
on Distributed Computing Systems (San Francisco, CA), 432–439. New York: IEEE.

Paton, N.W. and Diaz, O. (1999.) Active Database Systems. ACM Computing Surveys, 31(1), 63–103.

Phelps, R. and Wilensky, R. (1996). Towards Active, Extensible, Networked Documents: Multiv
Architecture and Applications. Proceedings of the ACM Conference on Digital Libraries DL’96 (Beth
MD). New York: ACM.

Jeffrey Richter and Luis Filipe Cabrera. (1998). A File System for the 21st Century: previewing the Win
NT 5.0 File System. Microsoft Systems Journal, November.
26

work

 of a
Work

n

Sun Microsystems. (1989). Network File System Protocol Specification (RFC 1049). DDN Net
Information Center. Menlo Park, CA: SRI.

Trigg, R., Blomberg, J. and Suchman, L. (1999). Moving Document Collections Online: The Evolution
Shared Repository. Proceedings of the European Conference on Computer-Supported Cooperative
ECSCW’99 (Copenhagen, Denmark). Dordrecht: Kluwer Acadamic Publishers.

Ungar, D. and Smith, R. (1987). Self: The Power of Simplicity. Proceedings of the ACM Conference o
Object-Oriented Programming Languages, Systems and Applications OOPSLA’87. New York: ACM.
27

	Extending Document Management Systems with User-Specific Active Properties
	Paul Dourish, W. Keith Edwards, Anthony LaMarca, John Lamping, Karin Petersen, Michael Salisbury,...
	Abstract
	1 Introduction
	1.1 Placeless Documents

	2 MANAGING DOCUMENTS USING PROPERTIES
	2.1 Related Work
	2.2 Document Systems and Databases

	3 Placeless Documents Design
	3.1 Personal and Universal Properties

	FIGURE 1: Consumer-oriented properties. Universal properties are associated with the base documen...
	3.2 Static and Active Properties
	3.3 Collections
	3.4 Interfaces Above and Below

	FIGURE 2: The Placeless Documents system integrates content from multiple repositories and makes ...
	4 USING ACTIVE PROPERTIES
	4.1 Active Property Dispatch
	4.2 Extending Document Functionality

	FIGURE 3: The delegate mechanism allows an active property to extend a document’s interface via a...
	4.3 Structuring Applications with Active Properties
	5 System Architecture
	5.1 Distribution Architecture

	FIGURE 4: Documents are managed by kernels, which are in turn organised within spaces. The gateke...
	5.1.1 Caching
	5.2 Kernel Architecture
	5.3 The Placeless Object
	5.4 Security Model

	FIGURE 5: Reducing network traffic by using credentialled objects. Instead of passing secure cred...
	6 Delivering document services with active properties
	6.1 Content Transformation
	6.2 Access Control and Digital Property Rights
	6.3 User-Specific Active Properties

	7 EXPERIENCES AND Open Issues
	8 Conclusions
	Acknowledgments
	References

