
Developing a Reflective Model of
Collaborative Systems

PAUL DOURISH

Rank Xerox Research Centre

Recent years have seen a shift in perception of the nature of HCI and interactive systems. As

interface work has increasingly become a focus of attention for the social sciences, we have
expanded our appreciation of the importance of issues such as work practice, adaptation, and

evolution in interactive systems. The reorientation in our view of interactive systems has been

accompanied by a call for a new model of design centered around user needs and participation.
This article argues that a new process of design is not enough and that the new view necessitates
a similar reorientation in the structure of the systems we build. It outlines some requirements
for systems that support a deeper conception of interaction and argues that the traditional

system design techniques are not suited to creating such systems. Finally, using examples from
ongoing work in the design of an open toolkit for collaborative applications, it illustrates how the
principles of computational reflection and metaobject protocols can lead us toward a new model

based on open abstraction that holds great promise in addressing these issues.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Dis-

tributed Systems—distributed applzcatzons: D.2.2 [Software Engineering]: Tools and Tech-
niques—user interfaces; D.2.1O [Software Engineering]: Desi~—rnethodologies; H. 1.10

[Models and Principles]: General

General Terms: Design

Additional Key Words and Phrases: Collaborative applications, computational reflection, meta-
object protocol, open implementations, system architecture.

1. INTRODUCTION

The last ten years or so have seen a remarkable shift in perspectives on the

design, evaluation, and use of interactive systems. The field of human–

computer interaction (HCI) has moved from being a relatively minor compo-

nent of software engineering to being the focus of attention for researchers

from a variety of disciplines, including psychology and social science. Studies

and investigations from these perspectives have led to a gradual evolution in

our conception of “the interface” and of computer-based work in general. As a

result, HCI has increasingly come to concern itself not just with the mecha-

Author)s address: Rank Xerox Research Centre, Cambridge Laboratory (EuroPARC), 61 Regent

Street, Cambridge, CB2 lAB, UK, and Department of Computer Science, University College,
Gower Street, London, WCIE 6BT UK.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to repubhsh, requires a fee and/or
specific permission.
@ 1995 ACM 1073-0516/95/0300-0040 $03.50

ACM Transactions on Computer-Human Interaction, VOI 2, No. 1, March 1995 Pages 40-63

Developing a Reflective Model of Collaborative Systems . 41

nism of the interface, but with a range of related issues concerning the

context in which interactive systems are used.

1.1 Studies of Work at the Interface

To ground discussion of this new view of interactive systems development, I

will discuss three areas of research that have informed it: (1) the customiza-

tion of interactive systems, (2) their embedding within a social organization,

and (3) the coadaptation of systems and work practices.

1.1.1 Customization. Customization and adaptation of computer systems

have been studied in a variety of contexts. Trigg et al. [1987] studied

adaptation in the Notecards hypertext system. They described four aspects of

adaptability that could allow a tool to be used in different application areas

by users with different working styles. These were flexibility (providing

generic, reusable objects and behaviors), parameterizability (offering a range

of alternative behaviors that users could select), integrability (linking with

other applications in the environment), and tailorability (allowing users to

make changes to the system itself). Their work showed how an adaptable

system could be applied widely, essentially serving as an infrastructure

within which a variety of information management applications could be

generated.

MacLean et al. [1990] were also concerned with customization in the

Buttons systems. Buttons are graphical on-screen objects that encapsulate

behavior; they can be incorporated into on-line documents and sent through

electronic mail. Buttons support multiple levels of customization. At the

simplest level, their name, placement, or graphical appearance can be cus-

tomized. More-advanced users can change explicit parameters to customize

them for particular needs, and more-radical changes in their behavior can be

made by modiffing the Lisp code that they contain. Buttons were designed

around these levels of tailorability to flatten the learning curve for interactive

systems. Establishing a “tailoring culture,” in which customizations are

encouraged and shared, was also crucial to the investigation.

Sharing customizations (and customization activity) has been a focus of

attention for other researchers. Mackay [1990a; 199 1] studied the patterns of

sharing customizations (in the form of configuration files, either in whole or

in part) in technical organizations. She found that a remarkable amount of

customization was performed (or shared) in groups, rather than being a

private activity, even when the software being customized was single-user.

Nardi and Miller [1991] showed that similar collaborative activity goes on in

the notionally “single-user” activity of programming and debugging spread-

sheets.

Customization is clearly a widespread and important phenomenon. The

studies highlight the importance of designing systems with an understanding

of how such flexibility can be harnessed and exploited.

1.1.2 Social Aspects of System Use. Ethnographic studies of work practice

and technology have pointed to the strong social elements present in appar-

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

42 . Paul Dourish

ently individual use of technology. Heath and Luff [1991], studying the

activities in a control room of London’s underground transport system, ob-

served a range of complex practices employed by the controllers. In particu-

lar, they showed how controllers would peripherally monitor each other’s

activities in order to coordinate their own actions with those of their col-

leagues. Heath and Luff further observed that individuals would quietly offer

commentaries on their own activities, specifically so that these might be used

by colleagues in their own work. Other uses of peripheral monitoring and

anticipation in similar settings have been observed by Filippi and Theureau

[1993] and Suchman [1992].

Harper et al. [1991] studied a different setting, in this case, the control

rooms of air traffic control centers. Again, they observed that apparently

individualistic activity is frequently designed to facilitate coordination be-

tween individuals. Their investigations pointed to the role that physical

artifacts can play in this process. The “flight strips” used by air traffic

controllers to record details of flights currently in their managed air space

are notionally designed to record information for an individual. However,

practices emerge around such artifacts in which they become the focus of

coordination activity.

Suchman [1987] discussed these issues more generally, concentrating in

particular on the situatedness of technology and the use of technology.

Technological interactions are embedded within social and organizational

situations, and their influence must be taken into account when attempting

to analyze or predict aspects of system interaction. These studies all call into

question the extent to which interactions and activity can be predicted from

an external viewpoint, and yet such predictions are at the basis of the

traditional system development approach.

1.1.3 Coadaptation of Systems and Practices. The third aspect, drawing

together elements from the previous two, concerns the longer-term mutual

evolution of systems and work practices. Mackay [1990b] presented a variety

of case studies illustrating this pattern, some of which were discussed above.

Perhaps of most interest here is one study on Information Lens [Mackay

1989; Malone et al. 1987]. Information Lens is a system designed to filter and

sort electronic mail. Investigations of use revealed that users adapted, or

even subverted, features of Information Lens to match it to their working

styles. This in turn led to a change in the development strategy, which

incorporated and developed the mechanisms that the users had created. This

is a spiraling process, based on the mutual interaction of system development
and patterns of use—in Mackay’s terms a coadaptive phenomenon.

Echoes of this unanticipated interaction between technology and working

practice are to be found in Sproull and Kiesler’s [1991] work on the organiza-

tional impacts of electronic communication. Such technologies are often con-

strued as “electronic office memos,” and subject to the same rules and

procedures. However, the experience is typically that aspects of electronic

mail—in particular, rapid turnaround and the emergence of self-organizing

interest groups-result in a very different pattern of use, often much to the

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995

Developing a Reflective Model of Collaborate Systems . 43

surprise of the organization. As patterns become better established, they

affect the further development of the technology, and so the coadaptive spiral

continues.

1.2 A Revised View of Interactive Systems

There is a set of general issues underlying the particular concerns raised in

all of these studies. Together, they form part of a wider reappraisal of the

nature of computer-based work. They encourage us to look beyond widget

design in understanding interactive systems. For instance, focusing on the

development of the notion of user interface, Grudin [1993] showed how it

extends beyond the computer itself, incorporating the wider social and orga-

nization issues arising from the use of computer systems. Elsewhere, Grudin

[1990] placed these developments within a historical framework of changing

concerns in interface design. At the microlevel, these sentiments were echoed

by Bowers and Rodden [1993], who found the same factors at work in a very

specific setting, the installation of a large network of CSCW systems in a

particular observation.

Studies of customization, of the social nature of computer-based work, and

of the convolution of systems and work practices all address issues in the

organization of computer-based work practices. They highlight the strong

relationship between these practices and the social organization of work

generally. Computer-based work is highly socially organized. As a result,

these studies place an emphasis on variability in use; they point out the

complexity of the relationship between the general pattern of use and the

details of particular activities.

It is not surprising, then, that studies such as these should result in a

reorientation of our view of the fundamental nature of interactive systems, a

reorientation that takes into account this expanded understanding of com-

puter usage. Indeed, such a reorientation has been taking place. It moves

away from a view of systems as fixed, “black-box” artifacts that could be

objectively studied and assessed, toward a new view of “systems-in-use”

which acknowledges the influence of these other elements. In the new view,

systems are situated within particular organizations and practices; they are

dynamic, placing greater importance in the study of patterns of use and the

cycle of software adoption; and they evolve, with specific working practices

and behaviors emerging around the interactive system, while at the same

time the system itself being tailored to particular working styles. In other

words, systems must be able to support the variability exposed by investiga-

tions like those discussed above.

This shift in perspective has largely addressed interactive systems as they

appear to the user, in particular settings. Indeed, it has been part of a general

trend toward participative or user-centered approaches to system building.

However, it raises other important issues, particularly for the designers and
implementors of interactive systems, issues which reach below the interface.

In this article I want to concentrate on the structure of the systems we

create. I believe that the implications of our reconception of HCI force us to

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

44 . Paul Dourish

reconsider our notions of system building. This means changes not only to the

process of design, but also, critically, to the artifacts of design. In particular, I

will show how fundamental mechanisms that we use in constructing software

systems do not support the design of interactive systems that change and

evolve. Drawing from work done in other areas of systems development, I will

show how the principles of computational reelection lead to a more open

model of systems development, with revivability as a key element. Using

examples from ongoing work in the design of an open CSCW toolkit, I will

illustrate how this approach tackles a number of existing flexibility problems.

Our starting point for this investigation, then, is a question, What does the

shift in our view of interactive systems imply for the nature of the systems

that we design?
r

2. IMPLICATIONS FOR INTERACTIVE SYSTEMS DESIGN

Our increasing appreciation of the issues discussed above has been accompa-

nied by a call for a form of design that is more sensitive to them, a form of

design oriented specifically around user needs and user involvement (e.g.,

Norman and Draper [1986], Ehn [1988], and B@dker and Gr@nb=k [1991]).

Following on from this, Grudin [1991] highlighted conflicts between the

“user-centered” approach to design and the traditional systems development

process.

Taking this as a starting point, I want to explore how we can construct

systems which support the sorts of practices outlined above. Principally, this

involves looking at technical implications of the new approach for interactive

systems and then working toward an architectural model that addresses

them. So, if we generalize some aspects of the “systems-in-use” perspective,

we can identify two sets of consequences for their design, concerned with the

cycle of design and creating evolving systems.

2,1 The Cycle of Design

The first of these is a reconsideration of the cycle of design. In the traditional

“waterfall” model of software engineering [Royce 1970], the “design” of the

system happens at a fixed point, after specification and before implementa-

tion. More recent models, such as those of Boehm [1988] or Booth [1991],

adopt a more iterative, prototype-based approach. Here, “design” is dis-

tributed more evenly through the development process, not concentrated in

one place.
Despite their differences, there is at least one point of fundamental agree-

ment among all of these models. They state that, at some point, a product is

deliuered to a user community, at which point, for that revision of the

software, the design process is over.

This is an assumption that we must reconsider in the light of the “systems-

in-use” model. When we take this perspective, we are forced to ask questions

such as, “When does design happen?”; “Who does the design?’; and “When

does it stop?” When we look at an interactive system as an evolving artifact

in use, it follows that the process of design does not end with the delivery of

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995,

Developing a Reflective Model of Collaborative Systems o 45

the system to some community of users. Instead, it continues as they use and

adapt the system. This leads to a second and more focused set of concerns for

system developers, looking at how systems are structured, constructed, and

delivered.

2.2 Creating Evolving Systems

The developer of an interactive system must not only be concerned with the

traditional issues of system design, but also with the issues of providing a

system that is amenable to evolution and adaption. We can focus on three

particular aspects of this problem:

Open Infrastructures. From the perspective of systems-in-use, we begin to

see delivered systems as not being closed and static, but rather as infrastruc-

tures for further specialization, refinement, and end-user design. They pro-

vide a framework within which users can change and adapt the basic system

to their own patterns of usage. The system developer is concerned with

appropriate openness within the system and with ensuring that it lends itself

to these adaptations. (The nature of “appropriateness” will be considered in

more depth later; for the moment, we can consider “appropriate” as being
“lending itself to appropriation.”) Additionally, extending the model of cus-

tomization, we must consider the ways in which the system can lend itself to

customization of function. (the “semantics” of manipulating information in an

interactive system) as well as presentation (surface-level issues of views and

interaction).

Dynamic and Reactive Systems. When we think of user behavior changing

over time, then we must consider how the interactive system will support and

respond to these changes. From this point of view, systems need to be

designed to react dynamically to patterns of use and activity. The systems’

response must be situated in the same sense as is the user’s activity. Users’

needs are highly dependent on many contextual factors, such as patterns of

activity and changes in configuration. Similarly, system behavior should

react to contexts of use.

Adaptive and Evolving Systems. In addition to the “immediate” view of

system reactivity, the developer must also be concerned with the longer-term

view of the evolution of the system. Research on customization and coadaptiv-

ity shows that this evolution has its roots in the social aspects of work and is

enabled, in part, through the sharing of customizations. This implies that it is

important to address issues such as the nature of the customization mecha-

nisms, as well as the means by which they can be distributed and shared, and

can themselves evolve over time—support for Maclean et al.’s “tailoring

culture.”

“Tailoring” in this context does not just imply the ability to make changes.

It is also crucial that changes and adaptations be separated from core

functionality in a principled way, while maintaining the “reach” of tailorabil.

ity into that core. This separation is crucial if tailoring and adaptations are

to be transportable, not just from person to person, but also across software

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

46 . Paul Dourish

releases. As software product cycles shrink, it is essential that users can rely

on this. Without such a separation, a user is unlikely to make the investment

of time and effort that tailoring involves, since the effects will be lost with the

next software release.

The issue for system designers, then, is to develop a set of techniques for

constructing software systems that enable the distribution of the design

phase throughout the whole life cycle of a system, and which support soft-

ware adaptation and evolution. This is a significant departure from the

traditional focus of software design, a focus on developing fixed algorithms

that manipulate models of the application domain. Instead, it focuses on the

way in which such models might be constructed and manipulated—a meta-

level problem, one step removed from the application domain itself.

3. REFLECTION AND OPEN ABSTRACTION

This view has developed from ongoing work in the design of systems for

Computer-Supported Cooperative Work (CSCW). CSCW systems, by their

nature, have very strong requirements for flexibility and openness. Cus-

tomization may be performed not only by users, but by groups as a whole,

and even a single group might employ a wide variety of working styles in the

course of their work. These factors bring the system developer face-to-face

with the issues of reactivity and adaptability. These problems are magnified

for developers of generic toolkits. These are used to generate a variety of

CSCW applications, which may embody different models of collaboration. As

a result, a major goal of my work has also been to provide the application

developer with sufficient flexibility to create a range of application styles.

Reflecting the shift in design focus outlined above, the emphasis here is on a

framework in which mechanisms and interfactional styles can be created,

rather than the traditional approach of providing a selection of mechanisms

from which particular components can be selected.

The systems approach that I am developing is based on the principles of

computational reflection [Maes 1987; Smith 1982] and, in particular, the

metaobject protocol [Kiczales et al. 1991]. This approach is a crucial

stepping-stone toward the goals of flexible design which were outlined above.

It provides a way of incorporating the flexibility we need not only into the

design process, but into the artifacts of design themselves; it is fundamen-

tally about systems that are open to explicit change and adaptation. It’s
worth taking some time, then, to look at the mechanics of reflection, and the

way it establishes a link between generic models of system action and the

performance of that action.
In the rest of this section, I will outline the reflective approach, show how it

has been developed into the metaobject protocol, and illustrate how such a

protocol can be used in a particular case (representation in a programming

language). I will show how it can be further generalized into the notion of an

open implementation, and then return to look at the design issues in interac-

tive systems.

ACM TransactIons on Computer-Human Interaction, Vol. 2, No. 1, March 1995

Developing a Reflective Model of Collaborative Systems . 47

3.1 Computational Reflection and Metaobject Protocols

Computational reflection is the principle that a computational system can

embody, within itself, a model of its own behavior (a self-representation)

which is causally connected to that behavior. Causal connection implies that

the representation not only describes, but also controls, the behavior of the

system. First, this results in systems that can examine their own behavior

through examination of the model; the system can “reason” about its own

activity. Second, such systems can make changes to the model and hence,

change their own behavior. Essentially, in addition to the traditional “base-

level” computation that concerns the system’s application domain, reflection

enables “metalevel” computation, which concerns the system’s own manipula-

tion and execution of base-level concepts.

This principle was originally demonstrated as part of the execution model

of 3-Lisp, a reflective dialect of the Lisp programming language. 3-Lisp’s

reflective facilities were realized by giving the language explicit access to its

own interpreter (the program controlling its behavior) [ales Rivi&es and

Smith 1984]. By looking at the interpreter structures, 3-Lisp programs could

examine their own execution states. For instance, a program could look at the

function call sequence recorded in the interpreter’s data structures and so

ask questions like, “how was this function arrived at?” Furthermore, by

making changes to those same structures, programs could alter future behav-

ior; for instance, modifications to the processing of binding structures would

allow programs to change the ways in which values were associated with

variables. Since the interpreter structures represent a program’s execution,

providing access gave 3-Lisp programs the facilities to reason about and

control their own behavior.

More recently, the principles embodied in 3-Lisp’s reflective model have

been combined with the techniques of object-oriented programming to yield

the metaobject protocol. The metaobject protocol embodies a reflective self-

representation in the structures of object-oriented programming. The self-

representation in a metaobject protocol-based system is less explicit than that

of 3-Lisp. Much of the representation is encoded in the object-oriented

structure. Access to the representation, and manipulation of it, is provided

through the object system, using the standard techniques of object-oriented

programming (subclassing, specialization, overloading, etc.). (An example, to

illustrate the mechanics of modiffing system behavior in a metaobject proto-

col, is provided below.)

The first full metaobject protocol (or MOP) was developed within the

definition of the Common Lisp object System (cLOS) [Bobrow et al. 1988;

1993].1 The CLOS MOP creates a reflective object system, using its own

object mechanisms to create an object-oriented representation of its behavior.2

The reflective model can be changed through standard object-oriented tech-

‘Since then, metaobject protocols have been incorporated into related languages, such m EuLiap
[Bretthauer et al. 1992] and Dylan [Shalit 1992].
2In other words, CLOS is not only reflective, but also metacircular (defined in itself).

ACM Transactions on Computer-Human Interaction, Vol. 2, No, 1, March 1995.

48 . Paul Dourish

ErEIEIIl

Em
(a)

Fig. 1. (a) In a packed representation, each data

value is held within the object at a fixed and /u
well-known position. (b) In a sparse representa-
tion, each object contains a table that associates
assigned slots with pointers to the data they age
contain. — .

weight ~n

height

I I
I I

(b)

niques, just like any other object-oriented definition. This allows application

programmers to adapt the object system semantics for particular needs,

perhaps for efficiency on particular platforms, compatibility with other sys-

tems, or specialized behaviors that enable the development of specialized

applications.

3.2 Using the CLOS MOP

To explain the CLOS MOP a little more concretely, I will present an example

in which an application programmer can revise design decisions in the

implemented language. This particular example focuses on the issue of

“instance representation” in the implementation, but it is illustrative of the

general approach.

In an object-oriented programming language such as CLOS, the implemen-

tor must design a representation for instances (objects),3 which will record

such properties as the identity of the instance and the values of its slots. A

simple and obvious mechanism might be to allocate enough memory for all of

the instance slots, to define that to be the size of an instance of that

particular class, and then to compile slot references in programs into the

appropriately valued offsets into the instance body.

This is shown in Figure l(a). The positions of the slots (x and y) are well

known, and so references to y can always be compiled as references to the

address of the object plus the size of slot x. This representation is efficient for

many applications which might be built with the programming language, and

it lets the compiler generate fast code for slot access.

3Throughout I will use CLOS terminology for object-oriented concepts. Individual objects are
instances of classes. Each instance contains a number of defined variables called slots. Class-
specific behaviors are defined as methods, grouped together into generic functions that define
the patterns of interaction.

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995

Developing a Reflective Model of Collaborative Systems . 49

However, there are application programs which are not well served by this

representation. For instance, consider a knowledge-based application. The

application programmer might wish to define a class referring to people. The

class might have many slots (hundreds or more), referring to various proper-

ties that individuals might have. However, any given instance of that class

would perhaps define and use only a few of them. In this case, the simple

representation outlined above, which allocates memory for slots whether or

not they hold values, would be inappropriate. Instead, the application pro-

grammer would prefer a mechanism that only allocates space when the slot

was assigned a value, perhaps one based on a lookup table for each instance.

Figure l(b) illustrates this alternative representation, where each instance

maintains pointers only to the slots which actually have values.

In traditional languages, an implementation’s choice of representation

scheme is hidden and fixed. Since it is hidden, the programmer becomes

aware of it only indirectly, for example, through its effect on performance in

particular cases. Since it is fixed, the programmer cannot use high-level

information about the program’s behavior to inform implementation deci-

sions. Instead, he or she has to write code so that it suits the decisions

already made by the implementor, what Kiczales [1992] refers to as “coding

between the lines.”

In a MOP-based language, however, the application programmer can revise

the decisions of the language implementor, in this case by changing the

representation model used. This is done through traditional object-oriented

techniques; in fact, the programming of the CLOS MOP is performed in

CLOS. For this example, the mechanisms would be roughly as follows:

(1) There is a class, called standard-class, of which normal user-defined
classes are instances. Standard-class is known as the metaclass of such

classes; a metaclass is the class of a class.

(2) The metaobject protocol defines generic functions for classes, including

the functions implementing instance allocation and slot lookup. Methods

for these operations specialize in standard-class and, hence, are applied to

its instances (normal classes).

(3) A new metaclass, embodying the new instance representation such as the
sparse table-driven approach, is defined as a subclass of standard-class.

Call this sparse-class.

(4) Since sparse-class is a subclass of standard-class, it inherits the same
methods for instance allocation and slot lookup as standard-class. How-

ever, we can define new, more specific methods that will override the

existing ones and that will apply only to instances of sparse-class.

(5) The applications programmer can now define new methods for allocate-

instance (the generic function for creating instance representations) and

slot-value-using class (for looking up slot values), specifically for instances

of sparse-class. These implement the new, sparse slot representation.

(6) The programmer can now create classes (like person) that have

sparse-class as their metaclass. These classes will inherit their class-like

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

50 . Paul Dounsh

behavior from sparse-class and, hence, use the sparse, table-driven in-

stance representation scheme.

So, in this example, the programmer has used knowledge of the requirements

of a specific application to revise implementation decisions. The revision was

performed by using the system’s reflective model of its own behavior. New,

specialized behaviors were associated with a subclass of one of the system’s

internal classes. Since the MOP guarantees the use of generic functions to

implement internal behaviors, this approach can be used to redirect the

object system’s behavior; and since it exploits the polymorphism of object-

oriented programming techniques, the new behavior applies only to the

objects we specify (those whose metaclass is sparse-class). Without this

facility, it would have been necessary to write the application’s code in a

convoluted way, to live with inefficient performance, or to abandon this

particular object system altogether. So there are benefits both to the applica-

tion developer, who can tailor the system to the needs of a particular

application, and to the language implementor, who can design a language

with much wider applicability than traditional ones.

By defining CLOS’S behavior in terms of the metaobject protocol, the

developers of the language had the means to make their language open and

adaptable. They avoided a traditional problem within language and toolkit

design, a premature commitment forced upon system designers in making

implementation decisions which limit the choices open to the later uses of

that system. Instead, the system specifies default behaviors, the base-level

behaviors of the object system (or whatever); but it also provides the mecha-

nism by which those behaviors can be revised to make them more appropriate

in particular circumstances.

The result, of course, is that the designers of a MOP-based system have a

much less specific idea of how their system will be used. Through default

behaviors, they specify a particular system, which should be generally useful;

but through the generic behaviors of the metaobject protocol, they define a

framework within which users can create their own customized systems. This

is a complex, two-level design task.

3.3 Extending the MOP Approach

The examples of reflective systems given above have concentrated on pro-

gramming languages (3-Lisp and CLOS). Indeed, the primary use of reflective

techniques to date has been to provide flexible semantics for programming

languages. However, we have seen that the essence of the reflective approach
is closely related to the problems of openness and adaptability that were

discussed for interactive systems design. So, is it possible that we could adapt

reflective techniques for use in other areas?

There are examples that show that we can. One starting point would be

Silica [Rao 1991], a reflective window system that forms the basis of the

Common Lisp Interface Manager (CLIM). Silica provides a basic window

system infrastructure for generating graphical, windowing applications. How-

ever, it also provides a set of metalevel abstractions that can be used by

ACM TransactIons on Computer-Human Interaction, Vol. 2, No, 1, March 1995

Developing a Reflective Model of Collaborative Systems . 51

application developers to reach into the windowing infrastructure and to

tailor it to the needs of specific applications, much as we saw with CLOS. In

Silica, the metalevel interface is defined in terms of metaobjects (windows

and window components) and the contracts between them. Contracts manage

the relationships among system components; they deal with issues such as
geometry management, window “stacking,” refreshing, and so forth. The

metalevel interface is used to avoid the same sorts of problems that moti-

vated the CLOS metaobject protocol, that is, situations in which implementa-

tion decisions in the (window system) infrastructure limit its applicability to

particular situations.

Silica represents a new departure in our discussion of reflective systems.

Unlike 3-Lisp or CLOS, which are general-purpose programming languages.

Silica cannot be defined in its own terms: a window system does not provide a
language that can be used to construct window systems. CLOS and 3-Lisp are

metacircular, whereas Silica is not. So, Rae’s notion of implementational

reflection, as embodied in Silica, shows how we can apply reflective tech-

niques to a much wider range of application areas then we have seen so far.

Some more recent work, arising from the metaobject protocol experiences,

has opened these notions into a more general means of providing a system’s

clients with control over the abstractions that they use. Kiczales [19921

presented metaobject protocols as one technique which can be used to realize

open implementations, system implementations which augment traditional

abstraction barriers with modification interfaces, allowing higher-level users

to “reach in” and make appropriate changes. It is an approach which can be

applied to a wide range of problems arising in areas where infrastructures

must support a wide range of applications. Kiczales also introduced the

complementary notion of open behavior, in which it is the semantics, rather

than the implementation, which are open to change from the higher levels.

An example of this, again in the CLOS domain, is PCLOS [Paepcke 1988].

PCLOS exploits metalevel hooks into the mechanisms by which objects are

created, accessed, and destroyed, and so creates a persistent version of the

language which maps objects onto long-term storage in a database. Here, it is

the behavior of the system that has been extended, rather than the imple-

mentation for particular applications or platforms.

These notions are very general. Although they originate in work on pro-

gramming language design, they point to the application of reflective tech-

niques in a much wider range of software application areas, including the

domain of interactive systems.

4. A REFLECTIVE TOOLKIT FOR CSCW DESIGN

The approach to system architecture that I have presented here results from

my current work on the design of Prospero, a flexible toolkit for CSCW

systems. Individual CSC W applications need to be flexible along various

dimensions. First, they must be statically flexible, such as in terms of

customization to particular individual or group practices or working styles

(explored in more detail by Greenberg [1991]). Second, they must be dynami-

ACM Transactions cm Computer-Human InteractIon, Vol. 2, No. 1, March 1995.

52 . Paul Dourish

tally flexible, in response to changes in group behavior in the course of

specific collaborations or even specific collaborative sessions. Third, they

must be implementationally flexible, as infrastructural and interoperative

requirements change. At the same time, a toolkit needs to provide developers

with sufficient flexibility to generate applications for a wide range of groups,

applications, and usage settings.

Just as most programming languages fix the implementations of the lan-

guage’s abstractions, existing CSCW toolkits such as GroupKit [Roseman and

Greenberg 1993] or MMConf [Crowley et al. 1990] are forced, through their

structure, to impose fixed models of their abstractions, such as distributed

data management. This follows directly from the traditional structuring

techniques in software development, which hide implementation details be-

hind abstraction barriers, out of reach of the applications developer. There is

clearly value to this approach. In particular, it isolates the applications

developer from toolkit concerns, focusing attention on those areas specific to

the application. The cost is that the range of applications which can be

developed within the toolkit is greatly restricted, since the implementation

decisions within the toolkit constrain the kinds of interactions which can be

supported in applications. The very isolation that toolkits provide prevents

the developer from using high-level information about the application to

inform lower-level decisions where appropriate.

My current work uses reflective techniques to address these problems.

Structuring a CSCW toolkit around a metaobject protocol allows us to tackle

two issues: First, as well as providing default behaviors that specify the

natural behavior of the system, it gives programmers the opportunity to

specialize and refine the generic framework in the toolkit. This means that

the toolkit can be used to provide customized support for particular situations

and applications. Second, the self-representation is present in the applica-

tions at run time. This allows appropriately written programs to respond

dynamically and adaptively as they are used.

This section outlines the way in which the reflective approach is applied in

the CSCW domain. Taking a very high-level description of generic application

behavior, it shows that, in areas of concern for CSCW application developers,

a variety of strategies can be supported within a single metalevel framework.

4.1 Using Reflection in CSCW Design

To apply reflection to the design of a CSCW toolkit, we must “open up” the

implementation. This involves specifying the germric behavior~ which under-
lie the system’s operation, and the generic entities on which these behaviors

act. Providing explicit access to these generic behaviors allows the toolkit

user (i.e., the programmer) to specialize them for particular situations. These

generic behaviors can be broken down into subprotocols, or specific areas of

responsibility.

Clearly, there are a huge number of potential areas of responsibility within

the toolkit. One of the major issues in MOP design is the identification of a

particular set of concerns that the design should address in order to create a

ACM TransactIons on Computer-Human Interaction, Vol. 2, No. 1, March 1995,

Developing a Reflective Model of Collaborative Systems . 53

system that is flexible but manageable. We do this by looking at the particu-

lar experiences of developers building both applications and toolkits for

cooperative systems. We can see a number of issues which are embedded in

the design of the infrastructure and yet have strong implications for the

kinds of applications which can be supported, areas that are candidates for

this approach.

Currently, my work concentrates on three main areas: (1) the management

of user data distributed across time and space, (2) mechanisms for managing

conflict in user interactions, and (3) control over the linkage between the

components of multiple users’ interfaces. For each area, the approach is

fundamentally the same and involves specifying generic behavior. This is

defined in terms of generic function invocations on metaobjects, or explicit

representations of the system’s behavior. These generic behaviors can be

specialized by application developers through incremental modifications to

the representations and the actions over them.

Before looking at the use of reflective techniques in these areas, it is

necessary to lay down some high-level structure that relates them. A full

description of the approach used in Prospero is beyond the scope of this

paper, and so a simplified account is presented here; the interested reader is

referred to other treatments (e.g., Dourish [19941).

Consider a system that operates in terms of generic edit operations applied

to shared objects. The most general layer of functionality is provided by the

following function:4

(edit-object object user editop) + state-marker

Object is a local reference to a globally shared object in the collaborative

workspace, user is a representation of the user performing the operation, and

editop is an encoding of the operation being performed. The generic function

edit-object applies an edit operation to an object and returns state-marker,

which describes the new state. It is implemented in terms of a number of

lower-level generic functions:

(find-object object) + shobject
(lock-object shobject user editop) + Iockid
(apply-edit shobject user editop) + change-marker
(propagate change-marker Iockid) + state-marker

These functions perform the component operations of edit-object: mapping

from local objects, presented within the interface, to object components of the

shared workspace; obtaining access to those objects; applying changes; and

then propagating those changes more widely and releasing the lock. We use

change-markers and state-markers as encapsulations of the state of the

system at various points. Change-markers record edits made that have not

yet been committed; state-markers checkpoint global status. The model pre-

sented by this protocol uses these for synchronization, as it presents a view of

4Functions are given here in the format used by the Lisp programming language; the first term
is the function name, and subsequent terms name arguments to the function.

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

54 . Paul Dourish

edit changes being performed locally; however, as long as it is true to this

generic model, implementations may behave differently.

Having set up this general framework, we can now investigate how system

variability in the areas of data distribution, conflict management, and inter-

face linkage can be managed.

4.1.1 Data Distribution. The issue of data distribution has been a bone of

contention within the CSCW implementation community for some time. The

term data distribution covers mechanisms by which the system manages the

user’s data storage and manipulation. These data may be replicated or

distributed across multiple computers, but the system must present a view of

a single, coherent data store. Systems such as MMConf [Crowley et al. 1990]

take a fully replicated approach in which each participant in a conference

has a private copy of the data. Others, such as Rapport [Ahuja et al. 1990],

use centralized architectures, which concentrate data at a single point in the

network. Greenberg et al. [1992] argued in favor of hybrid systems that

combine these approaches. Each of these solutions—replicated, centralized,

or hybrid—makes some trade-off between efficiency and complexity when

they are the only approach taken by a particular toolkit.

It seems clear that there can be no solution that is appropriate in every

case. Not only are there occasions where any of the centralized, replicated, or

hybrid approaches are appropriate, but further, there are times when we

might need others. For instance, consider disconnected systems in which

some interfaces involved in the collaboration are not permanently connected

to the others, or situations in which network latency is high and intragroup

interaction is low. Here it might be useful to adopt migratory mechanisms,

which allow data objects to move from one node to another in the network.

Migration is not a separate strategy in itselfi it can be combined with any of

the other three basic techniques. Other approaches can be posited that will be

particularly appropriate for other situations, and we need to be able to

express this variability in the toolkit.

Perhaps more importantly, the data distribution approach adopted by a

toolkit or application can have important consequences for the appearance,

functionality, and usability of the application. The use of a centralized data

store, for instance, can negatively affect the response time of the system;

while the use of a replicated approach has implications for the maintenance

of data consistency. This is at odds with the traditional view that such factors

as data distribution are sufficiently “low-level” that they can be safely

encapsulated and hidden behind an abstraction barrier.5
Rather than make these deci~ions up front, we can take the reflective

approach. Within a toolkit, we not only provide some default mechanism for

managing data within a multiuser system, but we also give access to the

mechanism by which data distribution is accomplished. This allows program-

mers, who may find the default behavior inappropriate in their case (e.g.,

5The interaction between the distributed data management and the issue of synchrony of

interaction is also critical, but merits a longer investigation than can be presented here.

ACM Transactions on Computer-Human Interaction, Vol. 2, No 1, March 1995,

Developing a Reflective Model of Collaborative Systems . 55

because of the network topology they are using), to “reach in” to the toolkit

and to provide new mechanisms to be used in their applications.

The sample subprotocol outlined above manages data distribution largely

through the find-object and propagate mechanisms, which isolate the location

and the distribution details from the details of actually making changes to

the objects. Using find-object, we can encode new mechanisms for mapping

between interface objects and the underlying shared data. For instance, in a

centralized system, find-object will always return a pointer to the central

object store, and propagate will return the locally changed object to the

server. On the other hand, in a fully replicated system, the shared object

reference is always local, and more complicated methods on propagate will

allow changes to be synchronized appropriately. It is important to note,

though, that this approach does not merely provide a switch between these

two modes. Instead, it provides a framework in which new solutions can be

devised. The generality of find-object and propagate allows many alternatives,

including hybrid and migratory systems, to be created.

Since the representations are available at run time, rather than simply

when the system is defined, other opportunities present themselves. We can

amend the data distribution mechanism using a dynamic model, which would

allow distribution strategies to be changed in the course of an ongoing

collaborative session. This allows an application to adapt to the needs of the

group as they arise. For instance, consider two users sharing a “scrawl-style”

whiteboard application, connected on the same ethernet segment. Since their

connection has fairly low round-trip packet times and high data integrity, the

system requirements for data management are fairly minimal; a centralized

approach is probably entirely adequate. However, things change if a third

user joins their conference from some distance, connected via a much slower

dial-up line. In this situation, a centralized approach is no longer appropriate,

since the bandwidth of the link to the third user is not sufficient to support a

network interaction with a data server for each action at the interface. The

system must switch, at run time, from one algorithm to another, from a

centralized to a replicated data representation. A reflective approach provides

the potential for multiple behaviors within the same generic framework, thus

supporting this form of dynamic adaptation. If distribution is associated with

an object through a mixin G class, then changing the class of the object will

result in the dynamic switch to a different behavior.

The reflective approach provides a framework within which new mecha-

nisms can be defined, and the means to attach use mechanisms selectively in

different parts of the system. This gives three principal benefits that would

not be available with traditional solutions. First, the application developer is

no longer constrained by decisions within the toolkit, but is free to adapt the

toolkit mechanisms to the needs of the application. Second, the toolkit

developer no longer needs to “second guess” the specific needs of the devel-

6A mi.xin class is one that can be added to other classes in order to bring some new behavior,
orthogonal to that defined in the base classes.

ACM Transactions on Computer-Human Interaction, Vol. 2. No. 1, March 1995.

56 . Paul Dourish

oper or to restrict applicability of the toolkit to a subset of potential applica-

tions. Third, using the reflective model at runtime allows applications to

respond dynamically to their environments and the requirements of particu-

lar situations, all within a single coherent framework. We will see this

pattern of benefits repeat itself in other areas where we apply computational

reflection to toolkit design.

4.1.2 Conflict Management. An important area of concern for collabora-

tive applications is the management, or avoidance, of conflicts within the

shared workspace. A conflict might occur, for instance, when two users apply

a change to the same object at once. Various techniques have been employed

to deal with this sort of situation, including floor control, exclusion, and

locking. Some systems, such as ShrEdit [McGuffin and Olson 1992], “lock

regions of the shared workspace, preventing simultaneous updates since only

one user can hold a lock on a region at any given time. Others, such as

GROVE [Ellis and Gibbs 1989], use an algorithm that “fixes up” conflicts

afterward in effect imposing a post hoc serialization on the changes that

users make.
The essence of conflict management strategies is that the system be able to

provide guarantees that users’ changes to the data will not lead to a loss of

synchronization or data integrity. Prospero exploits explicit representations

of such guarantees; this approach was explored in more detail by Dourish

[1994]. In this account, however, I will focus solely on systems providing

rapid access to a single thread of control.

Even if we choose a simple approach such as locking, then we have to

consider the impact that particular locking mechanisms, defined within the

toolkit, might have on higher-level usage issues. For instance, in a collabora-

tive system supporting free-form sketching or brainstorming, the emphasis is

probably on unencumbered access to the shared work surface. If each user

had to request and relinquish locks on the data or control of the floor

explicitly, the overhead would be too high, and the progress of work would be

severely disrupted. A looser form of control would be needed. On the other

hand, looser control would be inappropriate in systems where data integrity

must be rigorously maintained and controlled. In a collaborative software

engineering application, or a multiuser CAD system which generates control

instructions for a milling machine, data errors due to unchecked conflicts

could be potentially disastrous, and a much stronger and more explicit form

of locking would be required. Neither approach satisfies the needs of a

generic toolkit.
Addressing these problems in a reflective toolkit, we attempt to provide a

metalevel interface which defines the generic operations involved in request-

ing, obtaining, and releasing locks. In the simple protocol outlined at the

start of Section 4, we focus on the call to lock-object, and the implicit

release-lock called from propagate. As before, the protocol itself does not

embody a locking policy. Instead, it deals with a procedure by which locks are

obtained, and a facility for creating and installing new mechanisms. The

generic function specifies that, as well as the object to be locked, the function

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

Developing a Reflective Model of Collaborative Systems . 57

arguments include the user requesting the lock and the type of operation to

be performed. The system can take this information into account when

selecting the locking mechanism. So, different locking strategies may apply to

different users or activities, and for different sorts of objects within the same

system. The implementor can rely on the object system’s generic dispatch

mechanisms to select dynamically the appropriate locking implementation.

So the programmer can not only tailor locking strategies to particular appli-

cations, but can also build systems in which the locking mechanisms used

rely on specific details of the user or object involved.

The basic mechanism is sufficiently open that a wide range of locking

strategies can be defined. Not only will it allow the implementation of

standard strong and weak locks, but also multiway locks (held by multiple

people at once), tickle locks (which, when idle, maybe implicitly reassigned to

other users when they perform an operation), and so on. Indeed, we can

reproduce schemes such as GROVE’s dOPT algorithm, in which explicit locks

are not used at all, by making lock-object to construct an appropriate “state

vector.” This will be distributed by the call to propagate, so that other nodes

can use this information to resolve ambiguities arising out of conflicting or

disordered operations. In this case, we regard the dOPT state vector as an

implicit “lock,” in the sense that it is an object that will allow conflict

resolution. In other words, the same basic mechanism can be used to encode a

form of conflict management that is hardly “lock based” at all.

4.1.3 Interface Linkage. One of the most obvious differences among CSCW

systems is the level at which they “link” interface features. Linkage deter-

mines the level of control that users have over the way their own interfaces

appear, without affecting other users of the same collaborative application.

The grossest level of linkage is screen replication, as used, for example, in

Timbuktu [Farallon 1987]. Screen linkage means that all users see exactly

the same thing on their screens. Shared X systems [Garfinkel et al. 1989] link

interfaces at the level of windows; users share the contents of a window,

while their screens may show other, independent applications and window

placement can vary from person to person. Many explicit multiuser tools such

as ShrEdit are much looser and will replicate only the data.7 Here, users may

have different views of the data and may be provided with individual edit

cursors. Within this class of systems, there are further differences in what

each user can see of the other’s interfaces.

While many systems separate users and isolate their interfaces, research

on groups interacting through synchronously shared systems has shown how

low-level cues can be used by collaborators to create an awareness of the

activity and progress of the group as a whole [Dourish and Bellotti 1992].

Recent work, such as that of Dewan and Choudhary [1991] or Haake and

Wilson [1992], has looked at the provision of switchable linkage states, in

‘Note that our concern here is with replication of interface featurm, rather th~- ~ith the
underlying data representations discussed earlier. So, in these systems, it is only the data that
are guaranteed to be consistently replicated between interfaces.

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

58 . Paul Dourish

Fig. 2. Note only data objects, but also interface components, can be part of the shared
workspace.

which users can choose how much their interfaces will mirror each other’s. A

similar two-mode switching facility was available in rIBIS [Rein and Ellis

1991].

Once again, we can see the requirements for flexibility within applications

and toolkits, and we can see that this flexibility can have a dynamic compo-

nent. The nondynamic aspect is the same now-familiar toolkit-level problem;

that different applications require different linkage strategies, and so a

generic toolkit must be able to support a range of linkage options. Dewan’s

work with Suite or Haake and Wilson’s work with SEPIA tackles just this

problem, as well as addresses the dynamic problem of switching between

these different linkage modes during a collaborative session. However, both

systems provide flexible linking through specific “modes,” which predefine

linkage strategies. This only addresses part of the problem. What if different

users or groups require different linkage strategies, or if some situation calls

for a strategy that has not been predefine? There are no options while

remaining within these frameworks. Although clearly the goal here is to

provide flexibility, it is flexibility within the constraints of the set of needs

anticipated by the toolkit designer. Although these mechanisms are parame-

trized, they are not open.

The approach taken in Prospero is to make aspects of interface components

into shared objects, exactly like workspace data objects. This is illustrated in

Figure 2. In this way, components such as menus, button states, and cursor

positions are subject to the mechanisms outlined earlier for dynamic distribu-

tion algorithms. The same mechanisms that maintain consistency between

workspace objects can be used to synchronize interfaces.

The result is that the same flexibility that can be applied to distributed

data management also applies to interface management. Interface compo-
nents can be explicitly shared, causing that aspect of interfaces to be linked;

or they can be separated and broadcast, allowing each individual control

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995

Developing a Reflective Model of Collaborative Systems . 59

while being able to see others’ states; or they can be private, in which case

other users cannot see them. In addition, another property they have in

common with shared data objects is that they can be moved into and out of

the shared workspace in the course of a collaboration. This means that the

linked aspects of the users’ interfaces can be dynamically controlled and

adjusted as the collaboration continues.

5. REFLECTION AND ADAPTIVE COMPUTATION

In this article I have mainly been concerned with the use of computational

reflection and related techniques as ways of opening up implementations and

providing flexibility. The techniques I have discussed have been developed

primarily in the domain of language design. Recently, similar issues have

come to prominence in a number of other areas. Various radical solutions

have been adopted that go beyond the traditional separation of “mechanism

and policy,” and often, these address issues very similar to those discussed

here within the context of CSCW.

The design of communication protocols on data networks has traditionally

been based on a “layered approach. This form of design is exemplified by the

seven-layer 1S0 protocol stack [Zimmerman 1980]. End-to-end communica-

tion requirements are broken down into different areas of responsibility, such

as data representation conversion, direct host-to-host communication, and

internetwork communication. Each component is encapsulated in a layer, and

on a given machine, each layer interacts only with the layers directly above

and below it. More recently, however, the need to handle interactive multime-

dia traffic, as well as issues arising in the design of protocols for gigabit

networks, has resulted in a breakdown in this model. In its place, a flatter

approach is emerging in which more of the traffic management is controlled

directly by the application, rather than being hidden in the network software.

O’Malley and Peterson [1992] described a model in which the application can

compose kernel-internal microprotocols into larger units optimized for their

particular requirements. Clark and Tennenhouse [1990] proposed the concept

of Integrated Layer Processing as a mechanism to avoid the interlayer

inefficiencies that emerge when the infrastructure is examined from the point

of view of particular end-to-end systems.

In the area of operating systems, much functionality that has usually been

in the domain of the system itself is being opened up to external control. One

of the most obvious examples is Mach’s external pager [Rashid et al. 1987],

which allows user programs to involve themselves in aspects of the virtual

memory system’s operation. Similarly, Anderson et al. [1992] described

“scheduler activations” as a means to avoid trade-offs in the implementation

of threads, which are traditionally a completely opaque abstraction over an

implementation based either in the operating system kernel or in a user

library. Scheduler activations provide a finer grain of control and are explic-

itly designed to allow application-specific customization.
This trend is repeated in many other areas too, such as interprocessor

communication [Felten 1992] or even microprocessor design [Athanas and

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

60 . Paul Dourish

Silverman 1993]. The same principle is at work in all of these examples. They

are all based on an understanding that traditional closed abstractions are not

always appropriate for high-level systems design in general, and in particular

for the design of infrastructural components. The various solutions are

oriented around a downward flow of information, from the higher levels

(applications) to the lower levels (toolkits and infrastructures), in order to
support better interaction between the two. This downward flow, from appli-

cation requirements to the details of system support, mirrors the problems

that Prospero addresses with reflective techniques.

Reflection achieves this by opening up the underlying implementation and

allowing the applications programmer to explore alternative implementations

and behaviors within the metalevel framework. This corresponds with what

Kay [1993] characterized as late-binding systems, those in which design and

implementation decisions that affect observable behavior are delayed until

they can be resolved with as much context as possible. While the techniques

discussed here have been derived from work on language design, late-binding

is useful and important in interactive systems, especially in CSC W systems

where contextual factors play such a large part in the interaction.

Prospero is a toolkit for CSCW applications under development, based on

these principles. It concentrates primarily on issues in data distribution,

conflict management, and interface linkage. The examples in this article have

been drawn from this work in progress. The system provides default behav-

iors which can be used to construct applications in the usual way, where they

are appropriate. More importantly, though, it also provides a metalevel

framework that can be used to revise implementation decisions, to extend the

structure to cover new areas, and to make the toolkit more appropriate for a

range of applications.

6. SUMMARY

The primary focus of this article has been on models of implementing

interactive systems. I have argued that recent years have seen a fundamental

reorientation in our view of interactive systems and their use. In turn, this

forces a reorientation in our view of system design and structure. In particu-

lar, appreciation of the need for (and use of) customization facilities, the role

of work practice and situation in system use, and the coadaptive nature of

system use and user behavior lead us to a model of systems design which

emphasizes openness, dynamic behavior, and evolution of systems and prac-

tices.
The move away from static systems leads us to reconsider the architectures

that underlie interactive systems. It is not enough simply to change the

process of design; instead, we need to change the nature of the artifacts

themselves. By drawing on the principles and techniques of computational

reflection, derived originally from research into programming language se-

mantics, I have outlined a model of interactive system design which is

oriented specifically toward these new goals of flexibility and adaptation. In

particular, this model is currently being used as the implementational basis

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995

Developing a Reflective Model of Collaborative Systems . 61

of a toolkit for CSCW design, and I have outlined how this toolkit tackles a

number of current problems in CSCW toolkits which must be used in a wide

range of different circumstances and situations.

This work is currently ongoing. It is hoped that the reflective toolkit for

CSCW can provide insights into the general application of notions of open

implementation and behavior to a range of current problems in interactive

system design.

ACKNOWLEDGMENTS

The ideas expressed in this article would never have seen the light of day

without the contributions and encouragement of many people. I would partic-

ularly like to thank Hal Abelson, Bob Anderson, Victoria Bellotti, Danny

Bobrow, Jon Crowcroft, Gregor Kiczales, and Wendy Mackay for fruitful and

enlightening discussions. I am very grateful to Annette Adler, Jon Crowcroft,

Laura Dekker, Marge Eldridge, Lorna Goulden, Jonathan Grudin, Gillian

Ritchie, Lisa Tweedie, and the anonymous reviewers for careful readings and

valuable comments on earlier drafts of this article.

REFERENCES

AHUJA, S., ENSOR, J., AND LUCCO, S. 1990. A comparison of application sharing mechanisms in

real-time desktop conferencing systems. In Proceedings Conference on Oflice Information

Systems COIS 90 (Boston, Mass., Apr.). ACM, New York, 238-248.
ANDERSON,T., BERSHAD,B., LAZOWSBA,E., AND LEVY, H. 1992. Scheduler activations: Effective

kernel support for the user-level management of parallelism. ACM !l’rans. Comput. Syst. 10, 1
(Feb.), 53-79.

ATHANAS, P. AND SILVERMAN, H. 1993. Processor reconfiguration through instruction-set meta-
morphosis. IEEE Comput. (Mar.), 11–18.

BOBROW,D., DEMICHIEL, L., GABRIEL, R., KEENE, S., KICZALES, G., AND MOON, D. 1988. Common
Lisp object system specification. X3J13 Dec. 88-002R, June.

BOBROW, D., GARRIEL, R., AND WHITE, J. L. 1993. CLOS in context: The shape of the design

space. In Object-Oriented Programming: The CLOS Perspective, A. Paepcke, Ed. MIT Press,

Cambridge, Mass.

BODKER, S. AND GRONB=K, K., 1991. Cooperative prototyping: Users and designers in mutual

activity. Int. J. Man-Machine Stud. 34, 3, 453–479.

BOEHM, B. 1988. A spiral model of software development and enhancement. IEEE Comput.

(May), 61-72.
BOOCH, G. 1991. Object Oriented Design. Benjamin/Cummings, Redwood City, Calif.
BOWERS, J. AND RODDEN, T. 1993. Exploding the interface: Experiences of a CSCW network. In

Proceedings InterCHI 93 (Amsterdam, The Netherlands, Apr.). ACM, New York, 255-262.

BRETTHAUER, H., DAVIS, H., KOPP, J., AND PLAYFORD, K. 1992. Balancing the EuLisp metaobject
protocol. In Proceedings ZMSA 92 Workshop on Reflection and Metaleuel Architectures (Tokyo,
Japan, Nov.).

CLARK, D. AND TENNENHOUSE, D. 1990. Architectural considerations for a new generation of
protocols. ACM SZGCOMM Commun. Rev. 20, 4, 200-208.

CROWLEY, T., MILAZZO, P., BAKRR, E., FORSDICK, H., AND TOMLINSON, R. 1990. MMConfi An
infrastructure for building shared multimedia applications. In Proceedings ACM Conference on

Computer-Supported Cooperative Work CSCW 90 (Los Angeles, Calif., Oct.). ACM, New York.
DES RIVIilRES, J. AND SMITH, B. 1984. The implementation of procedurally reflective languages.

Tech. Rep. ISL-4, Xerox PARC, Palo Alto, Calif. June.
DEWAN, P. AND CHOUDHAaY, R. 1991. Flexible user interface coupling in a collaborative system.

In Proceedings of the ACM Conference on Human Factors in Computing Systems CHI 91 (New

Orleans, La., Apr.). ACM, New York.

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

62 . Paul Dourish

DOURISH, P. 1994. A divergence-based model of synchrony and distribution in collaborative

systems. EuroPARC Tech. Rep. EPC-92-102. Rank Xerox EuroPARC, Cambridge, U.K.

DOURISH, P. AND BELLOTTI, V. 1992. Awareness and coordination in shared workspaces. In

Proceedings ACM Conference on Computer-Supported Cooperative Work CSCW 92 (Toronto,

Canada, Nov.). ACM New York.

EHN, P. 1988. Work-Oriented Design of Computer Artifacts. Arbetslivscentrum, Stockholm,
Sweden.

ELLIS, C. AND GIBBS, S. 1989. Concurrency control in groupware systems. In Proceedings ACM

Conference on Management of Data SIGMOD 89 (Seattle, Wash.). ACM, New York.

FARALLON COMPUTING. 1987. Timbuktu: The Next Best Thing to Being There. Farallon Comput-
ing.

FELTEN, E. 1992. The case for application-specific communication protocols. Tech. Rep. TR-02-
03-11, Dept. of Computer Science, Univ. of Washington, Seattle, Wash.

FILIPPI, G. AND THEUREAU, J. 1993. Analyzing cooperative work in an urban traffic control room
for the design of a coordination support system. In Proceedings 3rd European Conference on

Computer Supported Cooperative Work ECSCW 93 (Milano, Italy, Sept.). Kluwer Academic,
Amsterdam, 171-186.

GARFINKEL, D., GUST, P., LEMON, M., AND LOWDER, S. 1989. The SharedX multi-user interface
user’s guide, version 2.0. Software Technology Lab Rep. STL-TM-89-07, Hewlett-Packard
Laboratories, Palo Alto, Calif.

GREENBERG, S. 1991. Personalizable groupware: Accommodating individual roles and group
differences. In Proceedings European Conference on Computer-Supported Cooperative Work

ECSCW 91 (Amsterdam, The Netherlands, Sept.). ACM, New York.

GREENBERG, S., ROSEMAN, M., WEBSTER, D., AND BOHNET, R. 1992. Human and technical factors
of distributed group drawing tools. Interacting Comput. 4, 3, 364–392.

GRUDIN, J. 1993. Interface: An evolving concept. Commun. ACM 36, 4 (Apr.), 110-119.

GRUDIN, J. 1991. Obstacles to user involvement in software product development, with implica-
tions for CSCW. Znt. J. Mart-Machine Stud. 34, 3 (Mar.), 435-452.

GRUDIN, J. 1990. The computer reaches out: The historical continuity of interface design. In
Proceedings ACM Conference on Human Factors in Computing Systems CHI 90 (Seattle,

Wash., Apr.). ACM, New York.

H-, J. AND WILSON, B. 1992. Supporting collaborative writing of hyperdocuments. In Pro-

ceedings ACM Conference on Computer-Supported Cooperative Work CSCW 92 (Toronto,

Canada, Nov.). ACM, New York.

HARPER, R., HUGHES, J., AND SHAPIRO, D. 1991. Harmonious working and CSCW: Computer
technology and air traffic control. In Studies in Computer Supported Cooperative Work.

J. Bowers and S. Benford, Eds. North-Holland, Amsterdam, 225-234.

HEATH, C. AND LUFF, P. 1991. Collaborative activity and technological design: Task coordination
in London underground control rooms. In Proceedings European Conference on Computer-Sup-

ported Cooperative Work ECSCW 91 (Amsterdam, The Netherlands, Sept.). Kluwer Academic,
Amsterdam, 65-80.

KAY, A. 1993. The early history of Smalltalk. In Proceedings ACM Conference History of

Programming Languages HOPL-IZ. SZGPLAN Not. 28, 3 (Mar.).

KICZALES, G. 1992. Towards a new model of abstraction in software engineering. In Proceedings

IMSA 92 Workshop on Reflection and Metaleuel Architectures. (Tokyo, Japan, Nov. 4-7).

KICZALES, G., DES RIVE3RES, J., AND BOBROW, D. 1991. The Art of the Metaobject Protocol. MIT
Press, Cambridge, Mass.

MACKAY, W. 1991. Triggers and barriers to customizing software. In Proceedings ACM Confer-

ence on Human Factors in Computing Systems CHI 91 (New Orleans, La., Apr.). ACM, New
York.

MACKAY, W. 1990a. Patterns of sharing customizable software. In Proceedings ACM Conference

on Computer-Supported Cooperative Work CSCWW 90 (Los Angeles, Calif., Oct.). ACM, New
York.

MACKAY, W. 1990b. Users and customizable software: A co-adaptive phenomenon. Ph.D. thesis,
Sloan School of Management, MIT, Cambridge, Mass.

ACM TransactIons on Computer-Human Interaction, Vol. 2, No. 1, March 1995,

Developing a Reflective Model of Collaborative Systems . 63

MACKAY, W. 1989. How do experienced Information Lens users use rules? In Proceedings ACM

Conference on Human Factors in Computing Systems CHI 89 (Austin, Tex.). ACM, New York.
MACLEAN, A. CARTER, K. MORAN, T., AND LOVSTRAND,L. 1990. User tailorable systems: Pressing

the issues with Buttons. In Proceedings ACM Conference on Human Factors in Computing

Systems CHI 90 (Seattle, Wash., Apr.). ACM, New York.
MAES, P. 1987. Computational reflection. Tech, Rep. 87.2, Artificial Intelligence Lab. Vrije

Univ., Brussels, Belgium.

MALONE, T., CROWSTON, K., RAO., R., ROSENBLITT, D., AND CARD, S. 1987. Semi-structured

messages are surprisingly useful for computer-supported coordination. ACM Trans. Offi Inf

Syst. 5, 2, 115-131.

MCGUFFJN, L. AND OLSON, G. 1992. ShrEdit: A shared electronic workspace. CSMIL Tech. Rep.,

Cognitive Science and Machine Intelligence Lab., Univ. of Michigan, Ann Arbor.
NARDI, B. AND MILLER, J. 1991. Twinkling lights and nested loops: Distributed problem solving

and spreadsheet development. In Computer-Supported Cooperative Work and Groupware,

S. Greenberg, Ed. Academic Press, New York.
NORW, D. AND DRAPER, S. (EDs.) 1986. User-Centered Systems Design. Lawrence Erlbaum

Associates, Hillsdale, N.J.

OMALLEY S. AND PETERSON, L. 1992. A dynamic network architecture. ACM Trans. Comput.

Syst. 10, 2 (May).
PAEPCKE, A. 1988. PCLOS: A flexible implementation of CLOS persistence. In Proceedings

European Conference on Object-Oriented Programming ECOOP 88. Springer-Verlag, New

York.
RAO, R. 1991. Implementational reflection in Silica. In Proceedings European Conference on

Object-Oriented Programming ECOOP 91 (Geneva, Switzerland). Springer-Verlag, New York.

RASHID, R., TEVANIAN, A., YOUNG, M., GOLUB, D., BARON, R., BLACK, D., BOKOSKY, W., AND CHEW,
J. 1987. Machine-independent virtual memory management for paged uniprocessor and
multiprocessor architectures. In Proceedings Conference Architectural Support for Program-

ming Languages and Operating Systems (Palo Alto, Calif., Oct.).

REIN, G. AND ELLIS, C. 1991. rIBIS: A real-time group hypertext system. lnt. J. Man-Mach.

Stud. 34, 3 (Mar.), 349-367.

ROSEMAN, M. AND GREENBERG, S. 1993. GroupKit: A groupware toolkit for building real-time
conferencing applications. In Proceedings ACM Conference on Computer-Supported Coopera-

tive Work CSCW 92 (Toronto, Canada, Nov.). ACM, New York.

ROYCE, W. W. 1970. Managing the development of large software systems. In Proceedings

WESTCON (Calif.).

SHALIT, A. 1992. Dylan: An Object-Oriented Dynamic Language. Apple Computer, Cupertino,
Calif.

SMITH, B. 1982. Reflection and semantics in a procedural language. Rep. MIT-TR-272, Lab. for
Computer Science, MIT, Cambridge, Mass.

SPROULL, L. AND KIESLER, S. 1991. Connections: New Ways of Working in the Networked

Organization. MIT Press, Cambridge, Mass.

SUCHMAN, L. 1992. Technologies of accountability: Of lizards and aeroplanes. In Technology m

Working Order: Studies of Work, Interaction and Technology, G. Button, Ed. Routledge,
London, U. K., 113-126.

SUCHMAN, L. 1987. Plans and Situated Actions. Cambridge University Press, Cambridge, U.K.
TRIGG, R., MORAN, T., AND HALASZ, F. 1987. Adaptability and tailorability in NoteCards. In

Proceedings Interact 87 (Stuttgart, Germany). IFIP, 723-728.

ZIMMERMAN, H. 1980. 0S1 reference model—The 1S0 model of architecture for open systems
interconnection. IEEE Trans. Commun. 28, 4 (Apr.), 425–432.

Received January 1994; revised October 1994; accepted October 1994

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

