
1

ICS 132: Organizational
Information Systems

Information Management and
Database Systems

information management

• organisations depend on information
– about their own processes
– about what’s going on around them
– the basis of monitoring and planning

• the dependence is fundamental
– modern organisational forms and practices are

built around the idea that information is available
• remember the case of the filing cabinet

keys to information mgmt

• scale
– dealing with information volume

• flexibility
– need to deal with information in different ways

• different questions you want to ask
• different views from different people

• consistency
– maintaining information quality and integrity

• note the role of the machine metaphor
– standardization, repeatability, consistency…
– not concerned with the data but with its form

organisational factors

• centralisation and distribution
– balancing control and autonomy
– balancing individual and collective control
– making information more visible

• and making patterns of access… e.g. Delphion

• standardisation and classification
– need to come to agreement about what info means
– controlling the form is a very powerful position
– examples from the ICD

data, database, DBMS

• data, database, DBMS
• DBMS: Data Base Management System

– set of programs to define, update, control databases
• this is what we often mean when we say “database”
• Sybase, Oracle, DB2, MySQL, Postgres…

– DBMS responsibilities
• layout out information on the disk, building indexes, getting

from one piece of data to another

– your responsibilities
• modeling the information
• describing the relations
• creating queries

database styles

• DBMS store generic information
– distinguishing characteristic is the basic data type



2

database styles

• DBMS store generic information
– distinguishing characteristic is the basic data type
– network

carperson

employee vehicle #

licence #

SSN

owns

is-a
has

has

has

database styles

• DBMS store generic information
– distinguishing characteristic is the basic data type
– network
– object-oriented

person

studentemployee

facultystaff

database styles

• DBMS store generic information
– distinguishing characteristic is the basic data type
– network
– object-oriented
– relational

Joe 132ICS A+

Ann 132ICS B+

Bryan 132ECON B-

Sameer 145PolSci D

Haimin 104ECE B

data modeling

• first step is to model the data
– looking for generic structure
– later, encode this as a database format

• modeling
– modeling languages suit particular forms of encoding
– ER modeling

• ER = entity-relationship
• particularly suited to relational databases

– based on the relational calculus
– a systematic procedure for turning models into tables

ER modeling

• identifying entities and their relationships
– not unlike OO modeling, but entirely static

• three (not two) elements
– entities

• basic objects of the domain

– attributes
• relevant features of those objects

– relationships
• (constrained) ways in which objects related to each other

ER modeling

• entities & entity sets
– entities occur in sets
– broadly, entity sets in ER are like classes in Java

• the describe a class of data
– concrete: person, book, computer
– abstract: account, concept, holiday

– entities are like instances
• the important thing about entities is that they can be

distinguished from one other

– defining entities defines what you can know
• definitions suited to different purposes

– e.g. different ways of describing books
» for a library, a publisher, or a bookstore

Book



3

ER modeling

• attributes
– attributes are properties of an entity
– attributes have values

• normally, single-valued (“atomic”)
– e.g. a person has just one SSN

• sometimes, multi-valued
– e.g. a person may have more than one phone number

Book

title

isbn

author
ER modeling

Book

title

isbn

author

Publisher

city

name

publishes

• relationships define relations
between entities
– relationship sets link entity sets

• essentially, a typology of relations, e.g.
– from employee to office
– from course to instructor
– from course to student

• relationships define relations
between entities
– relationship sets link entity sets

• essentially, a typology of relations
• from employee to office
• from course to instructor
• from course to student

• relationships can have attributes
– attributes not of one entity or

other, but the relationship between
them

• e.g. last-accessed
– for bank accounts and account holders

ER modeling

Book

title

isbn

author

Publisher

city

name

acquired
publishes

one-to-one
(e.g. person to office)

one-to-many
(e.g. department to person)

optional one-to-many
(e.g. classes to TAs)

many-to-many
(e.g. classes to students)

ER modeling

• relationships have cardinality (number)

ER modeling: example the primary key

• identifying instances
– database needs to be able to tell instances apart
– all it has to go on is what’s in the ER model

• the primary key
– one or more attributes that uniquely identify

individual entities
• what identifies people?
• what identifies books?
• what identifies houses?
• what identifies cars?
• what identifies bank accounts?



4

the primary key

• relationships also have
primary keys
– primary key of relationship

is set of primary keys of
the entity sets involved

– might add descriptive
attributes of relationship

Book

title

isbn

author

Publisher

city

name

acquired
publishes

ER modeling

• the simplicity of ER is useful
– ER is a communication tool – esp. with the

participants in a process/setting

• you’re dealing with types, not objects
• not really entities, but entity sets

• relationship vs attribute?
– depends on what you want to know
– structure of data depends on the questions you’ll

want to ask of it

ER modeling exercise

• draw an ER model for a car rental database
– identify cardinality
– identify primary keys

turning models into tables

• step 1
– for each entity in the ER model

• create a relation that includes all the atomic attributes
• choose one or more attributes as the primary key

turning models into tables

• step 2
– for each one-to-one relationship in the schema

• identify the two entity sets S and T
• choose one (say, S)
• include the primary of T as an attribute of S
• include the atomic attributes of the relationship as attributes

of S

turning models into tables

• step 3
– for each 1:N relationship

• identify the relation S at the “N” side of the relationship
• include the primary key of T as an attribute of S
• include the atomic attributes of the relationship as

attributes of S



5

turning models into tables

• step 4
– for each two-way N1:N2 relationship

• create a new relation S to represent this relationship
• include primary keys of both relations in S
• include relationship’s atomic attributes in S

turning models into tables

• step 5
– for each multi-valued attribute

• create a table to represent this attribute
• one column for a single value of the attribute
• add the primary key of the entity (or relationship) of

which it is an attribute

turning models into tables

• step 6
– finally, for each multi-way relationship

• create new relation S
• include all the primary keys as attributes of S
• include atomic attributes of relation as attributes of S

next time

• more databases
– relational database normalization
– SQL queries

• read the Bowker paper


