ICS 132: Organizational
Information Systems

Information Management and
Database Systems

administrivia

e second TA

— dhawal shah, shahd@uci.edu
* homework
» discussion sections

information management

* organisations depend on information
— about their own processes
- about what'’s going on around them
- the basis of monitoring and planning

» the dependence is fundamental

— modern organisational forms and practices are
built around the idea that information is available
* remember the case of the filing cabinet

keys to information mgmt

¢ scale
— dealing with information volume
o flexibility
- need to deal with information in different ways

« different questions you want to ask
« different views from different people

e consistency
— maintaining information quality and integrity

organisational factors

» centralisation and distribution
— balancing control and autonomy
- balancing individual and collective control
- making information more visible
« and making patterns of access... e.g. Delphion
¢ standardisation and classification
— need to come to agreement about what info means
— examples from the ICD

data, database, DBMS

* data
— a big pile of bits
¢ a database
- structured collection of data
- organised according to predefined relations
« paper documents?
 contact list on my Pilot?
* world wide web?
o why bother with a database?
- need to maintain consistency
— don’t want to have to repeat information

data, database, DBMS

o DBMS: Data Base Management System
— set of programs to define, update, control
databases

« this is what we often mean when we say “database”
« Sybase, Oracle, DB2, MySQL, Postgres...

— DBMS responsibilities
« layout out information on the disk, building indexes,

getting from one piece of data to another

— your responsibilities
* modeling the information
« describing the relations
* creating queries

data modeling

o first step is to model the data
— looking for generic structure
— later, encode this as a database format
¢ modeling
— modeling languages suit particular forms of encoding
- ER modelling
« ER = entity-relationship
o particularly suited to relational databases (more later...)

ER modeling

« identifying entities and their relationships
— not unlike OO modeling, but entirely static
o three (not two) elements
- entities
« basic objects of the domain
— attributes
« relevant features of those objects
- relationships
o (limited) ways in which objects related to each other

ER modeling

¢ entities
— broadly, entities in ER are like classes in Java
« the describe a class of data
— concrete: person, book, computer
— abstract: account, concept, holiday
— defining entities defines what you can know
« e.g. different ways of describing books
— for a library, a publisher, or a bookstore
e attributes
- features of entities

« people have names, books have titles, cars have license
numbers, etc.

ER modeling

« relationships between elements

— the relevant feature is cardinality
* “how many”

- relationships describe links between data
— relationship types describe cardinal properties

ER modeling

{ one-to-one
l:l—@ one-to-many
l:l—@ optional one-to-many
E—@ many-to-many

ER modeling: example

ER modeling

« identifying instances
— database needs to be able to tell instances apart
- all it has to go on is what’s in the ER model
o the primary key
— one or more attributes that uniquely identify items
« what identifies people?
« what identifies books?
* what identifies houses?
« what identifies cars?
« what identifies bank accounts?

ER modeling

¢ things to remember
— the simplicity of ER is useful
¢ ER is @ communication tool — esp. with the participants
- you're dealing with types, not objects
« not really entities, but kinds of entities

ER modeling

¢ things to remember
— entities in the domain are not entities in the world
* domain is essentially things we might want to know about
— sometimes, entities will be virtual objects
* e.g. representing a transaction as an entity
— purchasing a book
— making a cash withdraw!

ER modeling exercise

¢ draw an ER model for a car rental database

database styles

o DBMS are generic
— represent many different forms of information
- search for common structure
o early DBMS styles
— hierarchical data models
« hierarchical storage
« greater or lesser constraint on branch structure
— network data models
» objects and arbitrary relationships

database styles

o relational database style
— data is stored in tables

— each row represents a relationship amongst values
« in fact, tables are often known as relations
— link to mathematical notion of relation
* mapping between domains
— domain of keys
— domain of values

relational databases

o the key field

— data uniquely identifying a particular row
- “uniquely identifying” is not a technical condition
* it's up to you to figure this out
— John, Paul, George and Ringo may all be different

— but given name is a poor key field in most applications
* sometimes it can be a single field
—e.g. SSN

* sometimes it may be a combination of fields
— e.g. name & address

relational databases

¢ schemas

— relational databases based on formal data definitions
- again, like specifying classes
— schema describes table structure and storage req'ts
— table “book”:

« author CHAR(50)

« title CHAR(100)

« isbn CHAR(30)

« price DECIMAL(3,2)

relational databases

¢ tables and relations

— a relationship database involves multiple tables
— why split them up?
* avoid repetition

— e.g. don't store delivery address separately for each order
— inefficient

— can lead to inconsistency
— putting them together again
* need to correlate information
— draw from many places
— integrate across tables

— we'll talk more on Wednesday about constraints

relational databases

o first, turn entities into tables
— with attributes as columns
» then, examine relations as tables

— many-to-many relationships almost always tables
— one-to-one relationships?

— one-to-many relationships?
* why am I prevaricating?
— ER model is informal

— rules for formalising data definitions (next time)

exploiting structure

¢ all DBMS exploit common structure
— common structure across instances
« all books have these properties
— common structure across databases

« all data can be modeled in this way
— e.g. relational data model

— what’s the point of this common structure?

SQL

¢ SQL is the Structured Query Language
— originally developed for IBM’s System/R in 1970s
— now an open standard (actually, a bunch of them)
e a common interface for relational DB’s

— manipulation

« creating tables, updating them, adding data
— examination

* looking data up: queries

SQL

¢ queries have three basic components
— select
* what aspects of the data do we want to see
- from
« what tables contain it
— where
« filtering of results
* syntax
—select attributel, attribute2, ...
fromrelationl, relation2,
where predicate

SQL

¢ some basic examples

—select title from books

—select title frombooks where
aut hor =* douri sh’

—select title frombooks where
aut hor =" douri sh’ and price < 35.00

—sel ect grade from students where
id=*12312312

—select id,nane from students where
grade="'f’

SQL

* queries across multiple tables
— relational model splits data into different tables
— queries need to integrate across multiple tables
- selects that combine table are called joins

e example

- tables: “students” (id, name), “grades” (id, score)
—sel ect name, score

from students, grades

where students.id = grades.id

sQL

¢ combining results
— union, intersect, except
- these are operators over selections
o examples
—select title frombooks where author =
‘dourish’ except select title from books
where title = ‘context-aware conputing’
—select id fromhonmeworkl where score > 85
intersect select id fromhomework2 where
score > 85

— NB: neither of these are the easiest ways to do them...

SQL

» postprocessing (order, group)
— need to organise results
- order (sort), group (clustering)
o examples

—select id, nane, score from students
order by score

—sel ect nanufacturer, nodel, price from
price_list group by manufacturer

SQL

* some processing over results
- e.g. avg(), sum(), count()

o examples
—select count(*) fromstudents
—sel ect avg(score) from grades

—sel ect author, avg(price)
from books group by aut hor

SQL

e summary
— selecting, combining, processing

» there’s more, of course...
- subqueries
- update and modification as well as querying

using SQL

* what SQL is not
— not a full programming language
- not a development environment
» sqgl queries normally embedded in programs
- e.g. from java, using JDBC
- languages differ in their degrees of integration

using SQL

d ass. f or Name(JDBC_CLASS);

Connection conn = Dri ver Manager . get Connecti on(DB_URL, "ics132", *password");
Statement statement = conn.createStatement();

Resul tSet rs = statenent.executeQuery(“select title, author from books");
Resul t Set MetaData nd = rs. get MetaData();

out. println("<TABLE BORDER=2>");

out.println("<TR>");

for (int i =1; i < nd getColumCount() + 1; i++) {
out.println("<TD>" + nud. get Col umNane(i).trin() + "</ B></TD>");

}
out.println("<TR>");
while (rs.next()) {
out.println("<TR>");
for (int i =1; i < nd. getColumCount() + 1; i++) {

out.println("<TD>" + rs.getString(i) + "</TD>");

}
out. println("</TR");

out. println("</ TABLE>");

summary

¢ key points:
— information processing is about making the world
tractable

* amenable to summarisation, modeling & prediction

— DBMS provides a framework for data management
« regularised for efficiency, consistency & maintenance

- relational databases
« organise information according to relations & tables
 sgl provides uniform access

what’s coming up

Wednesday

— more on database design and normalisation

— homework on databases

Friday

- discussion section

* Monday
- performance and competition
— read Alter chapter 6

* next Wednesday is the mid-term

