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ABSTRACT 
In distributed software development, two sorts of dependencies 
can arise. The structure of the software system itself can create 
dependencies between software elements, while the structure of 
the development process can create dependencies between 
software developers. Each of these both shapes and reflects the 
development process. Our research concerns the extent to which, 
by looking uniformly at artifacts and activities, we can uncover 
the structures of software projects, and the ways in which 
development processes are inscribed into software artifacts. We 
show how a range of organizational processes and arrangements 
can be uncovered in software repositories, with implications for 
collaborative work in large distributed groups such as open source 
communities.   

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Techniques – 
user interfaces. D.2.10 [Software Engineering]: Design – 
representation. H.5.3 [Information Systems and Presentation]: 
Group and Organizational Interfaces – computer-supported 
cooperative work. 

General Terms 
Design, Human Factors, Measurement. 

Keywords 
Social networks, software repositories, data mining, socio-
technical systems. 

1. INTRODUCTION 
Studies of the social organization of technical work have 
repeatedly drawn attention to the complex interactions between 
social practice and technological artifacts [e.g. 2, 24, 31]. The 
artifacts that mediate and support technical work reflect not just 
technical constraints and needs but simultaneously reflect working 
arrangements, divisions of labor, and aspects of expected practice. 

This dual role is exhibited not simply by technological hardware, 
but by other “technical” artifacts such as classification schemes 
and formal representations.   

For example, Bowker and Star [4] discuss the social embedding of 
classification schemes. Drawing on a number of examples, but 
most particularly the International Classification of Diseases, they 
illustrate how classification schemes reflect a social order as much 
as a natural order, making the phenomena they describe amenable 
to forms of analysis, interpretation and computation that reflect 
the social arrangements of the work. Lynch [25, 26] explores the 
central role of image-making in scientific practice and 
communication, and discusses the “rendering practices” by which 
features of messy reality are transformed into more portable and 
broadly consumable visual forms, designed again for particular 
sorts of comparison and discussion. Fujimura [17] describes how 
scientific discoveries are transformed into standardized packages 
of techniques and technologies that allow them to be moved 
between sites, and which in turn influence how scientists see 
problems as “do-able” and amenable to particular solution 
approaches. 

Latour refers to this phenomenon as “inscription”[23]. Drawing 
on anthropological studies of scientific laboratory practice [24], 
he describes how social arrangements, debates, divisions of labor, 
and patterns of work become inscribed into the artifacts and 
representations in which science trucks. Inscription is a process 
through which social practice and technological artifacts become 
inextricably intertwined. For example, standardized processes 
imply divisions of labor, standardizations of skill, etc. [34]; formal 
models imply ways of uniformly disambiguating between 
“interesting” and “uninteresting” (or “relevant” and “irrelevant”) 
phenomena [3]; instruments and devices imply particular ways of 
working and available infrastructures [33]; and methods and 
models create conventional and acceptable ways of formulating 
problems [17, 18].  

One domain of technological practice that has been of particular 
interest to researchers in CSCW is software systems development 
[13, 20, 21]. Inscription issues are particularly relevant to software 
development practice, since software artifacts are pure 
inscriptions; free from traditional physical constraints, they are 
written forms that describe the forms and patterns of software 
system structure and operation. Software mechanisms are, in 
general, subject to much less external constraint than physical 
mechanisms, which is a source of tension in joint 
hardware/software development teams [32]. In short, there are 
very many different ways of producing working software systems. 
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The discipline of Software Engineering is, arguably, primarily 
concerned with developing software systems that satisfy not 
simply internal functional constraints but also external constraints 
of modularity, reusability, maintenance, comprehensibility, 
documentation, etc, which themselves reflect organizational and 
social expectations of how, where, when, and why the software 
system may be used. For instance, Conway [9] recognized over 30 
years ago that the structure of the system mirrors the structure of 
the organization that designed it, while Parnas defined a software 
module as “a responsibility assignment rather than a subprogram” 
[29].  

Software development, then, is a particularly fruitful domain in 
which to study the relationship between technological artifacts 
and the social structures that shape them.  

It is this relationship that drives the work presented here. In 
particular, we want to explore aspects of the relationship between 
software artifacts and software development processes. Although 
processes are more or less well-defined in formal organizations, 
informal software development, such as that associated with the 
free and open source software movement, has a different 
character. Open source projects must essentially produce their 
own structures. These structures are emergent rather than formal, 
implicit in the development practice rather than explicitly 
codified. While this allows open source projects to be flexible, it 
also makes them more complicated for participants to understand 
or explain; software development processes are a means for 
organizational accountability as well as organizational regulation 
[19]. Our work has been motivated by the question of whether 
aspects of informal software process can be found in the structure 
of the software artifact itself. Using a software visualization tool, 
Augur, we have been conducting an analysis of the artifacts of a 
number of software projects, a “software archeology” to explore 
the relationships between artifacts and activities as they are 
negotiated in distributed software development through mining 
software repositories.  

The paper is structured as follows: in the following section we 
discuss in greater detail the sources of complexity in software 
development. Next, we present our visualization-based approach 
for analyzing software projects. We then explore open-source 
software projects in greater detail with examples. Finally, we 
discuss the implications of our results for the understanding of 
open-source projects, followed by some concluding remarks. 

2. ARTIFACTS AND ACTIVITIES IN 
SOFTWARE DEVELOPMENT PRACTICE  
Software development teams face two sources of complexity in 
their work – the complexity of the artifact, and the complexity of 
the activities that surround it. By the complexity of the artifact, we 
mean the inherent complexity of the software system – the 
appropriate design and use of algorithms, architecture, structure, 
parallelism, scale, dynamic behavior, etc. The creation of software 
is a skilled practice, and much of this skill is in understanding the 
opportunities and limitations of different approaches to technical 
problem-solving and different software designs. This sort of 
complexity is inherent in software system design; it characterizes 
even the creation of small-scale software systems by individuals, 
such as in programming assignments to be solved by students, 
personal programming projects, etc, and many empirical studies 
of programming practice have pointed to aspects of the problem-
solving process [e.g., 11]. However, since most professional 

software development (and even much amateur software 
development, in the open source world) is conducted not by 
individuals but by teams, then a second source of complexity 
arises – the complexity of the development activities themselves. 
By this we mean the complexity introduced by the fact that 
multiple people are creating and modifying the software system at 
the same time, requiring developers to coordinate parallel and 
distributed work, identify, avoid and recover from conflicts, 
anticipate problems, share goals, formulate strategies, and achieve 
a coherent concerted effect. Many empirical studies of software 
development teams focus on these coordination problems [e.g. 
22]. 

Many researchers have studied the complexity of software 
development practices with an eye to developing new 
technologies that can help developers deal with these 
complexities. Reflecting these two sources of complexity, two 
technological strategies have emerged to deal with them and help 
developers in their day to day work The first focuses on the 
complexity of software artifacts, and attempts to give software 
developers better tools for understanding, interpreting and 
manipulating the software artifact itself. For example, many forms 
of software analysis help the programmer to understand the 
structure of the software system. Software systems exhibit two 
forms of structure, static and dynamic. The static structure of the 
software system concerns the relationship between the units that 
the programmer creates – classes, methods, modules, variables, 
and other components out of which software systems are built. 
The dynamic structure of a software system concerns how this 
program will give rise to a running process – where the program’s 
static structure specifies potential action, the program’s dynamic 
structure concerns actual behavior. Each of these may be analyzed 
and made available to software developers as ways to help them 
in the process of software development. For instance, static 
analysis can uncover certain kinds of potential security concerns 
[35] and uncover potential error states that might arise at run-time, 
as well as helping programmers understand the relationship 
between different elements in the software system [5]. Dynamic 
analysis can be used to create profiles of a program’s run-time 
behavior, determining which elements of the program consume 
the majority of memory, activity, etc. Especially when programs 
grow large, providing automatic tools to understand these 
structural properties of software systems can relieve developers of 
a considerable practical burden, and can help them to create 
systems that operate effectively. 

The second focuses on the complexity of development activities. 
These tools are, perhaps, more familiar to researchers working in 
Computer-Supported Cooperative Work, since the mechanisms 
that have been developed to support software development have 
also been applied in other domains. The most widespread set of 
tools are those based on formal descriptions of the software 
development process – models that specify how the software 
development task is broken down into a series of sub-tasks, and 
how those subtasks are to be coordinated. Configuration 
Management (CM) systems describe how software systems are 
arranged, and the relationship between elements within a 
development process; they enforce rules that prevent simple 
conflicts from taking place by regulating access to the software 
artifact under construction (ensuring that only one developer can 
be working on a specific module at a time, for example.) Like 
workflow systems, these process-based software development 
systems impose an order on the software development activities in 



order to prevent breakdown situations from arising. An alternative 
approach has been to support more open-ended forms of 
coordination based on mutual visibility, awareness, and end-user 
coordination rather than formal process-based coordination. Of 
course, these two modes of operation are not exclusive. Grinter 
has particularly drawn attention to this issue; in her empirical 
studies of software engineering, she has noted how users of CM 
systems use the information it provides to maintain an informal 
awareness of each other’s activity and to interpret and anticipate 
potential consequences for their own [19]. 

However, although these two sources of complexity (the artifacts 
and the development process) are typically addressed in isolation, 
empirical studies of software development practice suggest that, 
for programmers and developers, they manifest themselves as part 
of a common problem. For example, one of our recent studies 
looked at a team of software developers engaged in the 
maintenance of a software system called MVP [12]. This team 
used a state-of-the-art CM tool to manage their coordination 
issues surrounding the changes in the source code. However, in 
addition, they had to adopt an email convention that advised 
developers to send an email to the team’s mailing list with a brief 
description of the impact that their work (changes) would have on 
other’s work. By doing that, MVP developers allowed their 
colleagues to prepare for and reflect about the effect of their 
changes. This suggests that the software artifact being developed 
and its development activities need to be somehow integrated. In 
this case, the source-code dependencies affected the software 
development activities adopted by the MVP team. Aiming to 
address this problem by providing developers with a more 
comprehensive view of the software development process we 

developed Augur, that brings together views of the artifact and 
views of its surrounding activity. Augur is explored in the next 
section. 

3. VISUALIZING SOFTWARE 
DEVELOPMENT 
The explorations that we describe here have been conducted using 
a tool called Augur, a system for visualizing software systems 
[16]. Augur is a visualization system based on the Seesoft 
paradigm [15], in which properties of the software system are 
mapped to color and other features of a graphical display of the 
source code itself. For instance, in the most common case, we 
might show an overview of the system in which each line of 
source code is represented by an equivalent line of pixels, colored 
to indicate how recently each line was modified. This view allows 
a developer or manager to see which areas of the system are 
“active.”  

Our initial system, described elsewhere [16], integrated simple 
code analysis with analysis of activity records, and made these 
accessible in a single visual frame providing coordinated views. In 
addition to displaying the pattern of activity over the source code, 
it also displays aspects of the structure of the source code.  This 
coordinated view allows developers to understand the character of 
the activity carried out – not just that a modification has been 
carried out, but what sort of a modification it is (the addition of a 
new method, code “commented out”, a revision to existing 
functionality, etc.)  
 

 
 

 
Figure 1 – Augur 
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The basic Augur interface is shown in Figure 1. Each pane 
displays a different aspect of the system being examined: changes 
in one view are immediately reflected in the others. The large 
central pane shows the line-oriented view of the source code. In 
the figure, the color of each pixel line indicates how recently it 
was modified; this allows a developer, at a glance, to see how 
much activity has taken place recently and where that activity has 
been located. 

In our informal evaluations, developers involved in distributed 
software development projects relied upon both the activity 
information and the structure information in coordination to 
develop a holistic view of software development activity. 

As noted above, Augur was originally developed as a tool for 
software developers, providing them with a flexible visualization 
of system activity. However, as we explored the range of ways in 
which people used the tool, and the set of extensions that they 
proposed, we found that it might provide value too as an analytic 
tool. In particular, as users asked for mechanisms that would help 
them explore the structure of the system with finer granularity, we 
noted that these structures might also provide the basis for an 
“archeological” exploration of a software repository. In our more 
recent work, we have been extending the richness of the 
representations that Augur provides, in response both to user 
requests and to the new opportunities for analysis. In particular, 
we have been exploring the use of call-graph analysis and network 
analysis as ways of forming richer pictures of distributed 
development activities. Insights from our previous fieldwork with 
commercial software development [13] also suggest this avenue 
of research. 

3.1 Call-Graph Analysis 
The original version of Augur incorporated only a simple static 
form of structural analysis, one that classified lines of code 
according to their type, and so allowed a developer to see each 
line of code in terms of the larger structures within which it was 
embedded. In our more recent versions of the system, we have 
begun to augment this view with information that explores the 
dynamic structure of code. 

In particular, we have incorporated call-graph analysis. A call 
graph is a data structure that describes which elements of a 
software system make use of which other elements. Software 
systems are constructed in terms of procedures (or “functions” or 
“methods”), which may in turn make use of the results of other 
procedures, just as, in mathematics, a function can be defined 
which makes use of the results of other functions (e.g. if f(x) = 
sqrt(x) + 1, then the function f makes use of the function sqrt). A 
call graph lists all the procedures in a software system, and, for 
each procedure, shows what other procedures it makes use of. 

A call graph, then, reveals the potential dynamic structure of a 
software system, although it can be derived using static analysis 
techniques (i.e., it can be extracted directly from the source code, 
without examining a running instance.) More importantly, in 
demarking dependencies within the code (between one procedure 
and another), it also begins to suggest dependencies within the 
development team (between the maintainer of one procedure and 
the maintainer of another) [13].  

3.2 Network Analysis 
The relationship between members of the development team is 
made more explicit in the network view. In this view, Augur 
draws views of the network of contributors to a project, relating 
them according to patterns in their development activity. For 
example, a simple graph shows the relationship between project 
members who have contributed code to the same modules. This 
view abandons the source code as the primary spatial framework 
for displaying activity information; instead, it adopts a 
conventional graph (node and line) structure to show the 
relationships between people directly. 
The network view can use different graphical properties to 
indicate different features of the relationship between individuals. 
For example, in the graphs shown in Figure 1, each node (circle) 
represents a specific individual, while the lines between the circles 
indicate that the developers have both contributed code to the 
same module. The size of the circle indicates how many lines of 
code someone has contributed, while the thickness of the line 
indicates how many lines they have contributed to files in 
common. Finally, the color of the lines indicates how recent this 
activity is, with brighter colors indicating more recent activity.  

3.3 Combining Networks and Software 
Structure 
While useful individually and in combination with the other views 
that Augur provided, we found that these two perspectives could 
be fruitfully combined to tackle the problem noted in our earlier 
empirical work – that is, the ways in which software developers 
must orient towards dependencies between their own work and 
the work of others. 
Essentially, these perspectives highlight two sets of relationships 
in the software development process – the relationships between 
elements of the system (in particular, dependency relationships 
between different components), and relationships between the 
people who work on those components. Bringing these together 
begins to uncover the ways in which dependencies between parts 
of the software system can reflect or lead to dependencies 
between the developers themselves. They provide a technical 
means to explore the question that we raise at the start of this 
paper – that is, the extent to which software artifacts have 
inscribed into them patterns of interaction and participation. 
Augur, with these facilities, allows these questions to be explored 
empirically. 

There are two ways in which we have been exploring this. First, 
we have combined the two sources of information to replace the 
module-dependency graphs that arise from the call-graph analysis 
with author-dependency graphs that detail the relationships 
between authors. In particular, this allows us to resolve some 
problems that the engineers in our field study need to resolve, 
which is to determine who is likely to be affected by upcoming 
changes (or, conversely, whose work is likely to have an impact 
upon my own.) Second, by using the revision history features of 
the underlying CM system, we are able to look at patterns in the 
evolution of both technical and social structure of the system – 
how people join and leave a project, how participation patterns 
change over time, and how these changes might be related to the 
evolution of the software system itself.  



               
 

Figure 2: Forms of participation 

4. EXPLORING SOFTWARE PROJECTS  
The particular focus for our analysis is open source software 
development. Open source is an approach to software system 
development in which loosely-knit collections of volunteers, 
collaborating over the public Internet, create software systems 
whose source code is available to all (rather than being protected 
as a trade secret, as it is in most commercial development.) 
Proponents of open source development models claim many 
advantages for this approach, both practically and politically, 
including faster and more responsive development cycles, and 
more secure and robust software products. Unencumbered access 
to the source code and the development process is the central 
feature of the open source model, although its details vary from 
project to project. Although it is most commonly associated with 
non-commercial software development, many open source 
projects are at least partially funded by commercial activities and 
involve professional software developers whose participation is 
sponsored by their employers [36]. However, since open source 
projects exist either partly or entirely outside an organizational 
context, development processes and procedures do not follow 
organizationally mandated models [1]. Indeed, in advocating open 
source development models, open source analysts explicitly 
contrast regularized management and oversight (what is called the 
“cathedral” approach) with the more informal and ad hoc 
arrangements of open source projects (the “bazaar”).  Since open 
source projects must, therefore, evolve their own working 
arrangements and means of enforcing them, they are a particularly 
interesting object of study.  

This section describes different analysis that we performed in 
different open-source projects using Augur, in particular 
combining network and software structure, as discussed in the 
previous section. 

4.1 Types of Projects 
By looking at the networks of relationships between developers as 
indicated by dependencies between code modules, we can see 
how different approaches to project organization are reflected or 
“inscribed” in the source-code itself of each project. In a 
centralized approach, the control is potentially reflected in a call-
graph structure where other developers’ code is called by the 
“architect”s code. This developer’s code is the “glue” that 
connects the whole project together, all other developers’ code 
does not interact among themselves. That is not to say that the 
other code is not important nor relevant, we are just arguing that 

the architect’s code is the one integrating the whole project. 
Figure 2a illustrates this example; it is possible to identify a high 
degree of centralization around developer “gt78,” the “architect” 
developer in this project.  

Figure 2b illustrates a different structure, which we call densely 
networked. Instead of a single developer being responsible for 
integrating the whole project, now, this responsibility is evenly 
divided among a group of six different developers with a high 
degree of interdependence between them. There is no central 
“architect”, but a group of developers interconnected. These 
densely networked projects are marked by a high degree of 
interdependence between different modules and developers, often 
approaching a “fully connected” state in which each developer 
depends on the code of each other developer. The degree of 
participation may vary (it is rare for all members of the project to 
contribute equally, and a set of primary developers normally 
emerges), but they cannot be easily distinguished in terms of their 
particular roles and responsibilities as developers.  

Finally, Figure 2c shows a variation of the previous structures 
where not only a core of seven developers strongly connected can 
be found, but also a medium sized set of other four developers in 
the periphery of the project, that is, whose code does not interact. 
In this case, called the core and periphery division, a core phalanx 
of major developers are surrounded by a peripheral set of 
developers, less strongly connected. Note, again, that this is not a 
distinction between degrees of participation, but between forms of 
participation, as characterized by the interdependencies of the 
work. This is not an arrangement where a core group of 
developers is doing the majority of the work; rather, it is an 
arrangement where a core set of developers generate code that is 
strongly interdependent, while a peripheral set of developers tend 
to be more isolated from each other. 

4.2 Forms of Peripheral Participation 
We can further distinguish between various forms of peripheral 
participation. By tracing dependencies, we can see whether 
peripheral members are dependent on core members, or vice 
versa. Clearly, in some cases, the dependencies are mutual; these 
often characterize a peripheral developer who is playing a 
traditional role in the project, yet tends to be responsible for only 
some small portion of the system. More interesting, perhaps, are 
peripheral participants whose connection to the core is a one-way 
dependency; either core modules depend on peripheral ones, or 
peripheral ones on core modules.  

  (a) “Centralized”       (b) “Densely Networked”              (c) “Core and Periphery” 



Dependency, in our case, is a call from one component to another 
(or form the components of one developer to those of another.) 
So, peripheral modules that are called from core modules is a 
structure that is often associated with plugins, extensible 
component-based systems, or other systems in similar styles. In 
this case, a peripheral developer might develop a relatively self-
contained module, which must be activated from the system core. 
We typically see, then, that the core developers, whose code is 
tightly interdependent, are associated with central functionality; 
the plug-in or self-contained module is peripheral in both 
functionality and in connectedness. 

The inverse relationship characterizes a peripheral developer 
whose peripheral relationship is one of dependence on core 
functionality. Most commonly, we find this when a developer 
writes a test case, a novel user interface or application, or some 
other “wrapper” function that calls or relies upon the functionality 
of the rest of the system. 

4.3 Core/Periphery Shifts 
Earlier discussions of core and periphery focus on static structure, 
but we are interested in the dynamics of software processes, and 
in how participation shifts between core and peripheral 
participation. This phenomenon has been classified as both a 
learning and a political process, where one has to identify allies 
that back up a developer, “just like a statement in a scientific 
paper when it is accompanied by a large number of references and 
citations” [14]. 

This shift can be observed by examining the same open-source 
project at two different moments. By looking at the dependency 
structures in the source code, we can identify a developer’s 
contributions and their impact. In a shift from the periphery to the 
core, we expect to identify developers who initially contribute 
code that performs some function by calling others’ code. When 
these developers become more and more important in the project, 
their code starts to be called by other developers.  

Figure 3 illustrates this in the project Megamek1. Initially, 
developer Hawkprime was located on the edge of the project, as 
measured by connections in the network. At left, he is connected 
to one other developer through his code (indicated by the 
directions of the interdependencies edges: from Hawkprime to the 
other). The reason for this is that BMazur is the principal interface 
author, consequently more central than Hawkprime. Later (right), 
Hawkprime assumes a more central role in the project. Now, he is 
also a source of dependencies because he is the author of an 
interface being implemented by others; now, other developers 
depend on his work. Furthermore, instead of only being connected 
to one other developer, he is now connected to six of them. Again, 
the shift can be noticed based on the relative importance of the 
code being contributed.  

Using a similar approach, we identified the opposite effect, a 
developer’s shift from the core to the periphery of another project, 
ANT2. This time, the developer Umagesh initially had a central 
participation in the project. This can be observed by the five edges 
directed to him in the graph. Later, Umagesh shifted to the 
periphery of the project (Figure 4).  

                                                                    
1 http://megamek.sourceforge.net 
2 http://ant.apache.org/ 

As in previous examples, the important issue here is not so much 
that these shifts take place; the movement of people between 
peripheral and central positions is both common-sense and 
empirically well observed. The important issue is the way in 
which it can be found in the data record; that is, that the pattern of 
participation is manifest within the inscription, and can be 
analyzed structurally through dependency analysis of the software 
artifacts. 

4.4 Authorship Changes 
One of the arguably factors leading to open-source success is the 
freedom in allowing developers to join and leave open source 
projects. Some authors indeed use the term active developers to 
indicate the developers who have contributed to the project in a 
specified time period. Of course, authorship information extracted 
from the configuration management repository will provide this 
information for those interested. Figure 5 shows these transitions 
for two separate projects. This figure displays a bipartite graph 
where square nodes are authors and the slim, oval nodes are files. 
Author nodes are never connected directly to one another but 
instead are connected through their relationship to shared source 
files. The file node, then, becomes the link between author nodes. 

Figure 5a (left), this project (sugarcrm3) relied on a few authors 
who implemented nearly all components in the system. More 
recently, however, work has been split among five or six different 
authors, as indicated by the different colors in the right side of 
Figure 5a. That is, code in the system initially developed by one 
author has shifted ownership over time to other authors. 

Adopting the same approach, we identified an author domination 
effect, where the code starts out owned by multiple authors and 
then a developer begins to take over (Figure 5b). In this case, the 
green and yellow authors’ code has begun to pervade nearly every 
aspect of two separate sub-modules in the project parrot4. 

4.5 Patterns of Stability and Changes 
Finally, our last observation is with regards to patterns of stability 
and change in open source projects. For this example, we use data 
from the Python5 project to explore stability and change within the 
context of the file tree structure of the project. Files and packages 
are nodes in this graph colored by authors. They are linked by 
containment relationships (between a package and a file). There is 
no connection between two files. 

These graphs show how the structure of the source code (its 
organization in packages) is being used to structure the activities 
of the developers. For instance, Figure 6A describes a particular 
part of the source code initially implemented by a single 
developer. Later in the project, Figure 7A, it is possible to note 
that this developer remains the sole author of that module. That is, 
there was no change in the authorship of that code from one time 
snapshot to another. In contrast, part B of Figures 6 and 7 reveal 
how the authorship of code changes over time. Initially, in Figure 
6B, the highlighted section was primarily authored by one author, 
but overtime, this section was distributed amongst many authors.

                                                                    
3 http://sugarcrm.sourceforge.net 
4 http://cvs.perl.org 
5 http://www.python.org/ 



 

    

 
Figure 3: Shift from periphery to core 

 

      

 
Figure 4: Shift from core to periphery 

 

        

 
Figure 5: Authorship changes in projects over time. 

        (a)  Code ownership expands          (b) Code ownership contracts 

        (a) “Umagesh” in core     (b) “Umagesh” shifts to periphery 

  (a) “Hawkprime” in periphery    (b) “Hawkprime” shifts to core 



5. DISCUSSION 
Augur provides us with a way to place software modules and 
software developers within the same frame of reference, and 
describe their relationships. By analyzing dependencies and 
activities, it highlights not just the links between people and code, 
but the links between people and others through code, and vice 
versa. This homogeneous analytic perspective is reminiscent of 
the actor-network approach [6, 7, 8, 23]. Actor-Network Theory 
maintains a deliberate agnosticism as to sources of agency, and 
insists that human and technological “actants” be given analytic 
parity. Latour [23] points out that functions embedded in social 
settings may also be delegated to technology; for instance, rather 
than have a policeman monitor road traffic to ensure conformance 
with speed limits, we can lay down “speed bumps” to achieve the 
same effect. (In the UK, speed bumps are sometimes known as 
“sleeping policemen,” in vivid testimony to the potential 
relationship between physical and social elements.) Technological 
arrangements, as much as social arrangements, can be used to 
produce control and conformance with social norms. Actor 
Networks, then, bring together heterogeneous elements, including 
technologies, artifacts, and people. 

Latour and Woolgar discuss the social processes that shape 
scientific practice and discourse [24]. Scientific processes, he 
suggests, are a means to “delete modalities,” that is, to remove the 
conditions on truth statements. So, through this process, 
statements of the form “in the fourth experimental run, a 
correlation was observed between inputs and outputs” might be 
transformed into “our research suggests that outputs are 
proportional to inputs”, which in turn can be transformed into “O 
= k.I”; at each stage, some of the conditional elements are 
removed, and more universal statements can be made. Part of 
successful scientific practice, then, is the construction of networks 
that can help to “stabilize” particular results, deleting modalities 
by establishing the reliability of observations, results and 
conclusions. In this view, prestigious institutional affiliations, 
sensitive laboratory equipment, experimental verification, and 
solid theoretical foundations are not simply historical or technical; 
they are elements in the network, playing a strategic role in the 
stabilization of scientific facts. 

One concept arising from this perspective on scientific processes 
is that of the “obligatory passage point” – a narrowing of the 
network that designates some particular element as one that must 
be navigated in order to achieve a result. As befits the 
homogeneous treatment of heterogeneous elements in actor-
network theory, this might be any sort of entity. Professional 
certification might play such a role, for example; so might a 
particular theory, a scientific leader, a particular laboratory, and so 
forth. We can see how this can operate in open source domains. 
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In general, the relevance of these concepts to the work presented 
here is the light that they cast on the interplay between social and 
technical in distributed activities. A number of authors have 
explored aspects of the social structure of open source projects 
[10, 27, 28, 36]. Our approach has been to look at the ways in 
which aspects of the social and organizational structure are both 
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inscribed into and achieved through the technological 
organization of the underlying artifact, the software source code. 
The central lesson here is two-fold. First, that while the rhetoric of 
open source is of openness and access, the practice of open source 
is about closedness and regulation; essentially, a central 
consideration in managing a successful technical project is to 
ensure the consistency and quality of the technological artifact 
under production, which is managed by vetting both contributors 
and contributions, and so a structure must be produced by which 
such a vetting can be achieved. Second, this structure is manifest 
collectively by the social and technical organization of the project. 
The same engineering principles by which software systems can 
be organized to achieve technical properties (modularity, 
extensibility robustness, etc.) are also ones by which activities can 
be partitioned and managed, and access to the system limited. 
What we see in these examples, then, is essentially the emergence 
of obligatory passage points within software development 
practices. Those points may be technical or human elements. As 
presented among the forms of peripheral participation, there may 
be a particular module or component into which others must be 
hooked; a dispatch table, an event loop, or so forth. 

That these structures should emerge in successful software 
projects is not surprising; these projects, after all, require careful 
coordination, and some mechanisms are needed to ensure that this 
takes place. That they should emerge within open source projects, 
while not surprising, is nonetheless interesting, in light of the open 
source movement’s focus on participation and accessibility. What 
is particularly interesting, though, is that these processual 
elements of software production can, themselves, be found within 
the software structures that are the focus of activity. While Latour 
and others argue that processes and social structures are inscribed 
into scientific and technical artifacts, our experiences with Augur 
point to the ways in which, for software artifacts, they might be 
“read off” again. Our empirical examinations demonstrate that 
both software components (modules) and software developers can 
act, for example as obligatory points of passage; the structure of a 
software project both reflects and constrains the development 
process. An important piece of further work concerns the 
automatic recognition and extraction of these patterns; our work 
was oriented first towards determining whether process patterns 
could be found within software repositories. The answer is yes. 

6. CONCLUSIONS 
Distributed software development presents two sources of 
complexity to its participants – the complexity of the software 
artifacts under development, and the complexity of the process of 
developing those artifacts. We have presented a study of software 
artifacts, conducted using a visualization tool, which demonstrates 
how these twin sources of complexity are intertwined. Software 
artifacts are not merely the objects of software development 
processes, but are also the means by which those processes are 
enacted and regulated. The structure of the artifact both reflects 
the processes by which it has been created and can be used to 
control those processes by centralizing points of access, by 
regulating the relationships between independent activities, and by 
making visible the relationships between individuals. It is a 
means, then, by which the articulation work of the project can be 
carried out [30]. 

The intertwining of artifacts and activities is no surprise to CSCW 
researchers, of course. What is of interest here is to see how it 

happens in one particular case. Free and open source development 
is a particularly enlightening domain within which to study these 
concerns. On a mundane level, the artifacts of open source 
development are easily available; but more significantly, the inter- 
or extra-organizational context of much open source development 
means that the tools of the trade – CM systems, web sites, and the 
source code itself – are the site at which access and activity 
structure are negotiated.  In particular, we have shown how both 
individuals and software components may act as “obligatory 
passage points,” constrictions in the loose network of artifacts and 
activities that can be used to achieve local and partial 
stabilizations of dynamics socio-technical settings. Further, we 
have shown the use of computational tools to help make these 
structures visible. 

Our approach has been methodologically unusual, since we have 
been conducting, essentially, an “archeology” of software 
development processes. The critical next step is a more immersive 
engagement with large-scale distributed software development 
enterprises, in order to gain a better understanding of these 
processes “close up.” These open source settings provide a 
valuable site for examining the evolution of practice around 
technological artifacts – a central consideration for CSCW.  Our 
explorations demonstrate that software artifacts can reveal the 
relationship between technical and social structure of large-scale 
development projects, and so suggest that collaborative tools can 
exploit not only technical but also social structures in supporting 
collaborative software development. 
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