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ABSTRACT
Software understanding for documentation, maintenance or
evolution is one of the longest-standing problems in
Computer Science. The use of “high-level” programming
paradigms and object-oriented languages helps, but
fundamentally remains far from solving the problem. Most
programming languages and systems have fallen prey to the
assumption that they are supposed to capture idealized models
of computation inspired by deceptively simple metaphors
such as objects and mathematical functions. Aspect-oriented
programming languages have made a significant breakthrough
by noticing that, in many situations, humans think and
describe in crosscutting terms. In this paper we suggest that
the next breakthrough would require looking even closer to
the way humans have been thinking and describing complex
systems for thousand of years using natural languages. While
natural languages themselves are not appropriate for
programming, they contain a number of elements that make
descriptions concise, effective and understandable. In
particular, natural languages referentiality is a key factor in
supporting powerful program organizations that can be easier
understood by humans.  

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – control structures.

D.3.2 [Programming Languages]: Language Classifications –
Very high-level languages.

General Terms
Documentation, Design, Human Factors, Languages.

Keywords
Language Design, Aspect-Oriented Programming, Natural
Language, Cognitive Foundations of Programming.

1. INTRODUCTION
Software systems in fields such as Science, Engineering and
Business are naturally complex, in that the structures and
processes that they capture have a certain level of domain-
specific complexity requiring domain expertise. But, on top of
that natural complexity, the problem of software development
is worsened by the existing software development
technologies. The kernel of the problem is that the existing
description mechanisms – programming languages – are
inadequate when it comes to conveying relevant information
to people about the software systems. The established
programming paradigms fail in providing appropriate support
for non-hierarchical concerns, additional or custom-made
behavior, and non-trivial domain-specific structures and
processes. As a result, software systems become fragile
“monuments” of code that only illuminated software
“artisans” (i.e. projects leads) dare to modify, preventing the
real domain experts to control the software in a direct and
systematic manner.

The use of architectural descriptions, rigorous software
development practices and modern programming languages
and tools helps, but fundamentally remains far from solving
the problem. The kernel of the problem is the lack of support
for program understanding by the different people involved in
the project. Multithreading, exceptional cases, optimizations,
and the like, contribute to the natural complexity of the
programs. But a considerable part of the complexity is due to
the fact that programmers, when writing the code, are forced by
the programming language to write it down in arcane and
esoteric ways that are a long way from expressing the natural
intentions behind the code. As a consequence, many times
programmers prefer to write blocks of code from scratch rather
than having to understand and debug other people’s code.
Especially when working at the systems level, code that
communicates effectively to the machine rarely communicates
effectively to human readers.

1.1 Programming Reflects Thinking
Researchers are constantly looking for ways to express the
programs in a form that more closely follows the way
programmers think before they are forced to break their
thoughts in operational details imposed by the existing
programming languages. We know that this is possible,
because when programmers are asked to explain their code,
they do so concisely, skipping operational details, sometimes
using a thought flow that is quite different from the control
flow in the code. Our goal is to address the gap between those
two forms of explanation.
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Over the years, several languages, both textual and visual,
have been designed that focus specifically on issues of
usability and expressiveness (e.g., [60] and [10]). They usually
target children, the novice programmer, end-user programming
and rapid prototyping. None of these languages, however, has
had much success in systems software development. The
problem is that those languages and environments present
simplified models of computation that cannot support the
demands of systems programming.  

In the domain of professional programming, Object-Oriented
Programming and Aspect-Oriented Programming (AOP) [20]
have been addressing some related issues within existing
programming languages, targeting complex software
applications. In particular, AspectJ [1], an AOP extension to
Java, allows programmers to localize crosscutting concerns
such as tracing, logging or profiling in program modules of
their own and outside the classes. That way, code that reflects
some important design units, but that Java forces to be spread
throughout the system, can be encapsulated in their own
modules, improving readability, maintainability and
configurability. The success of AspectJ is due, in part, to the
acknowledgement in the software industry that the problems
of programming language expressiveness are serious; AspectJ
embodies an approach which makes code more expressive,
more readable, and more reliable, and can address industry’s
need for improved reliability and decreased development time.
AspectJ achieves this by making programs follow more
closely the intentions of their developers. But even AspectJ i s
still far from supporting the natural expression forms we are
looking for.

1.2 The Role of Natural Languages
Before computers came along, people were successfully
defining and disseminating complex systems for thousands of
years, using a technology they come equipped with: natural
language. They were writing all sorts of documents containing
structure and process information, ranging from specification
manuals of complex systems to constitutions of social
organizations. Writing a structured document, for example, the
Constitution of the State of California, requires much more
than simply putting words together in grammatically correct
sentences; it requires dividing the subject matter into smaller
and smaller units, e.g., chapters, sections, subsections,
paragraphs, sentences, that convey semantic information to the
reader. Those small units don’t exist in isolation; they refer to
and use each other. They do so in ways that obey the rules of
the natural language and that very rarely obey the simple
functional module structures supported by existing
programming languages.

Computer programs, of course, are different. They must define
structure and process for computational systems, and therefore
must address issues of data types and control flow. Systems
software development is hard partially because of the inherent
complexity of the structures and processes that they convey.
But a considerable part of the burden of systems software
development is due to the complexity added by the
operational details imposed by programming languages, such
as having to deal with temporary variables or having to cope
with exceptional cases. We argue that such problems are
historical artifacts. They reflect the legacy of traditional
programming languages in either machine languages
(resulting in an overriding concern with control flow and
assignment) or mathematical formalisms (resulting in an

overriding concern with binding and transformation.) Existing
programming languages force programmers to express ideas
using a narrow support for structural and reflective referencing
and a total lack of support for temporal referencing.

1.3 Contribution
The main purpose of this paper is to re-generate some
discussion around the role of Natural Languages in
Programming Language design. We are aware that this is a
relatively old theme that can be traced to the 1960’s [55]. A lot
has happened in Linguistics and in Programming Languages
since then. In particular, some lessons learned from Aspect-
Oriented Programming lead us to believe that there is value in
revisiting the issue now. AOP made us pay more attention to
the way certain referencing mechanisms occurring in natural
languages allow us to express some ideas that can’t be easily
expressed in traditional programming languages.

In this paper we suggest two new ways of thinking beyond
AOP, the first one within the AOP framework, and the second
outside that framework. We make the argument that the
primitive abstractions in programming languages should be
drawn from the study of Natural Languages, rather than from
Computer Engineering or Mathematics or ad-hoc metaphors
such as Objects.

The reminder of the paper is organized as follows. In Section 2
we revisit AOP, highlighting the English-equivalents of the
expression mechanisms in some AOP languages. In Section 3
we state some improvements that can be done in AOP systems,
while remaining centered in the AOP paradigm. Section 4
builds on the observations in previous sections and drafts a
programming language way beyond AOP. Section 5 describes
the relevant fields of research that should be taken into
consideration. Finally, Section 6 concludes the paper in a
rather inconclusive manner.

2. ASPECT-ORIENTED PROGRAMMING
Understanding the leap between object-oriented modular
programming and aspect-oriented crosscutting programming
is crucial to contemplate a leap beyond AOP. We have been
deeply involved in the development of Aspect-Oriented
Programming [20] and several flavors of it, D ([34], [35], [36]),
AspectJ ([37], [21]), Demeter [32] and Aspectual
Collaborations [31]. AspectJ, now reaching the 1.0 version, i s
a stable extension to Java used by large numbers of software
engineers in industry.

The following is a brief historical overview of AOP that
illustrates how it comes one step closer to certain referencing
mechanisms in natural languages.  

2.1 Domain Specific Languages: D
D was a domain-specific language that targeted two issues:
synchronization of threads and parameter passing in remote
method invocations. In this summary we describe only the
synchronization issue. In D, coordinator modules, separated
from Java classes, encapsulated the synchronization of
threads. For example, the following coordinator module
mandates the synchronization of BoundedBuffer objects:

coordinator BoundedBuffer {
    selfex put, take;
    mutex {put, take};
    condition empty = true, full = false;



    put: requires !full;
         on_exit {
           if (empty) empty = false;
           if (usedSlots == capacity)
         full = true;
         }
    take: requires !empty;
          on_exit {
            if (full) full = false;
            if (usedSlots == 0)
              empty = true;
          }
  }

What this says, in English, is the following:

• This is a coordinator for BoundedBuffer objects.

• The operations put and take are self-exclusive, i.e., no
two threads can execute either of  them
simultaneously.

•  The operations put and take are also mutually
exclusive, i.e., no two threads can execute both of
them simultaneously.

•  Let’s define the conditions empty, which should be
true in the beginning, and full, which should be
false in the beginning.

• For the operation put: its execution requires that full
is false; after exiting the operation: if empty was
true, then the buffer is not empty anymore; if, on the
other hand, the buffer reached its capacity after this
put operation, then now it’s full.

• <similar for take>

The binding between coordinator code and object code is done
by the name of types, such as BoundedBuffer, and
operations, such as put and take. Coordinators could also
directly refer to internal variables of the classes, illustrated in
this case by usedSlots.

2.2 General Purpose Language: AspectJ
In AspectJ, this idea was expanded and generalized. AspectJ i s
a general-purpose aspect language that uses the concept of
“join point.” Join points in AspectJ are points in the
execution (run-time) of a Java program that programmers can
name and handle at program time. Examples of join points are
the beginning of a certain method execution, the invocation of
an operation on an object, etc. In AspectJ, aspect modules,
separated from Java classes, can encapsulate not only
synchronization but also a variety of crosscutting concerns
such as debugging or notification. For example, the following
aspect mandates the display update upon moving objects,
involving different operations in objects of three different
types:

aspect DisplayUpdating {
  pointcut move():
   call(void FigureElement.moveBy(int, int))
   || call(void Line.setP1(Point))
   || call(void Line.setP2(Point))
   || call(void Point.setX(int))
   || call(void Point.setY(int));
  after() returning: move() {

    Display.update();
  }
}

What this means, in English, is the following:

• This is an aspect called DisplayUpdate.

• First let’s define a set of join points consisting of the
invocation of: moveBy in FigureElement objects,
setP1 in Line objects, setP2 in Line objects, setX
in Point objects and setY in Point objects; let’s
call this set move.

• When the computation reaches any of the join points
in move, and after returning from the invocations,
perform Display.update.

The thesis behind AspectJ is that certain units of program
specification or design––in this case, the display update upon
objects that have moved––have a systemic nature that cuts
across any of the single object modules that those units
pertain to. This thesis seems to be meaningful for software
engineers at large, who have been adopting AspectJ
enthusiastically.

2.3 The Kernel of AOP
What is it about Aspects that makes them both attractive to
researchers and useful to practitioners? Consider tracing, for
example. When we think of tracing, we formulate something
like this: “for all methods, call Trace.in before they start
executing and Trace.out after they finish executing.” However,
all programming languages will force us to transform this
sentence into something like this: “In method A, call Trace.in;
… call Trace.out; return. In method B, etc.” So what is it about
the first representation of the intention that’s better than the
second, and how does the natural language help? In this case
it’s the references to “all methods,” “before … executing” and
“after … executing”. That is the power of AspectJ: it supports a
richer set of structural and temporal referencing that follows
what we have in natural languages. AspectJ does it in a way
that seems to be very useful for practitioners: it allows the
encapsulation of these forms in modules that can be added to
or removed from the applications with a compilation switch. In
other words, writing a tracing aspect is like writing a different
chapter, or section, in a book.

So, what makes an Aspect be an Aspect, before we even think of
programming it with AspectJ? Given the name chosen for it,
which clearly influences our perception, Aspects are software
concerns that affect what happens in the Objects but that are
more concise, intelligible and manageable when written as
separate chapters of the imaginary book that describes the
application. This pseudo-definition of Aspect aligns well with
what users have been using AspectJ for. The structural and
temporal referencing in AspectJ are essential mechanisms for
achieving the separation between the Objects and those other
concerns. Those mechanisms are also naturalistic: we would
use those kinds of referential relations if we were to write it in
English, Portuguese or Hebrew. But the need for better
referencing mechanisms doesn’t end with what the word
“Aspect” conveys.



3. LESSONS FROM AOP
AspectJ is, by no means, the ultimate language and model that
solves the program-understanding problem. A lot more can
and needs to be done. But there are several important lessons
to be learned from AspectJ and AOP that can feed into the next
generation of language support for complex systems.

3.1 Binding between Aspects and Objects
Once the application objects and the aspect routine are un-
tangled and decoupled, they may bind with various degrees. If
the aspect routine has great relevance to the application
objects, it may palpate every element in the program and
potentially affect every heartbeat of its execution. If the aspect
routine has no bearing on the application program whatsoever,
there is no interaction. We call this the binding extent of
putting an aspect routine and an application program together.
In AspectJ, pointcut designators determine the binding extent
and join points are the binding elements.

With the binding model in mind, we can begin to look at some
more flexible AOP mechanisms. We identify three
characteristics of the binding extent:

Spread: The binding spread is the size of the cut, i.e., the
number of different join points the aspect binds to. A logging
aspect may affect every method of the code. Therefore the
binding between the logging aspect and any program is
typically wide spread.  In contrast, an advice that only
introduces a variable to a particular class in a particular
program, and only to that class, has a very narrow spread: a
single join point.  The binding spread is a metric over the
crosscutting and tangling resolution.

Form: Aspects have various forms of interaction with objects.
The binding form is the model of the join points. In AspectJ,
the form is mainly event-based, the events being the
underlying object execution events.  In aspectual
collaborations [31], the form is a collaboration-oriented join
graph.  Complex descriptions may need binding forms beyond
that expressible within the existing join point models.

Granularity: The granularity of the binding is the density of
the underlying grid of potential hooks for aspects in the
application program to bind to.  In AspectJ, granularity is a
property of the join point model and is independent of the
particular application program or a particular aspect
subroutine, but this need not be the case in general. The
granularity influences the lower bound on the form and the
upper bound on the spread.

3.2 AOP, Reflection and Metaobject
Protocols
AOP has a deep connection with work in computational
reflection and metaobject protocols ([57], [19]). A reflective
system provides a base language and (one or more) meta-
languages that provide control over the base language’s
semantics and implementation. The meta-languages provide
views of the computation that no one base language
component could ever see, such as the entire execution stack,
or all calls to objects of a given class. Thus, they crosscut the
base level computation.

Expressiveness is a goal, for which reflection is one powerful
tool. We have exploited this connection to great advantage in
our previous work on AOP. Early on, when prototyping AOP

systems, we often started by developing simple metaobject
protocols for the component language, and then prototype
imperative aspect programs using them. Later, once we had a
good sense of what the aspect programs need to do, we
developed more explicit aspect language support for them.

Existing programming languages force programmers to
express ideas using a narrow support for structural and
reflective referencing [39] and a total lack of support for
temporal referencing. AOP languages offer a reflective
architecture. Unlike core reflection, which is structural, the
aspectual reflection [22] is temporal, namely occurrence of
join points.  Natural languages seem to posses more temporal
referential forms beyond what AOP currently provides.

3.3 Anaphoric Relations
One of the main characteristics of natural languages, which
distinguish them from most formal languages, is the use of a
diversity of anaphoric relations. Anaphora is, essentially,
referentiality between utterances. Pronouns are examples of
context-dependent anaphora: this, that, it, her, which, etc. But
referent expressions can be more than pronouns. Natural
languages support a multiplicity of possible forms that can be
used to identify a referent in a given sentence or among
sentences. In general linguistic usage, anaphora refers to
referential dependence regardless of morphological form and
regardless of whether it is context-dependent or context-free.
In other words, ordinary pronouns and even full noun phrases
count as anaphora. For example, they can be: lists of nouns
such as “The president, the cat, the resident and the hat”;
constraints on nouns “colorless liquids”; etc. We are using the
term anaphora in this very broad sense. In this sense, as
explained in Section 2.3, AOP supports a simple form of
temporal anaphora. It can be extended to support a richer set.

3.4 Domain-Specific AOP Languages
Although Domain-Specific Aspect Languages (DSAL) are not
the focus of this paper, DSALs might be a better approach than
a general purpose aspect language. The reason is that domain
specific aspect languages can utilize a higher level join point
model. We can use a domain-specific language that   generates
code that is the basis for a higher-level join point model. The
join points are then advised by additional aspects. For further
arguments for DSALs, see [56].

4. BEYOND AOP
Elements of natural language, especially those pertaining to
referencing, can create programming languages that are both
expressive and executable. The goal of this paper is to identify
the binding mechanisms in natural languages that will enable
the description and organization of programs in a more natural
way.

4.1 Example
To have a more clear idea of which relations are useful and
which aren’t, and to illustrate the objectives of a naturalistic
programming language, we present an example in three steps.
First we show a piece of Java code; second we show the same
program using English words – the purpose of this second
form is to illustrate what we do NOT seek; finally, we show
another version of the same program, this time written in form
we target.



4.1.1 Extreme 1: Description using Java (version
1)
In the Ubiquitous Computing project at UCI we are developing
applications using several hardware and software platforms.
The applications include, for example, short-range acoustic
modems, Personal Area Network protocols and speech
processing [38]. These applications involve low-level systems
programming, they are computationally intensive and,
therefore, require a solid grasp of data structures,
optimizations and multi-thread programming. They are written
in Java and C, and the code is to be shared and (re)used by
many students.

Consider the following code, extracted from one of our
acoustic modems:

/**
 * encodeStream converts a given stream of
 * bytes into sounds.
 * @param input the stream of bytes to
 * encode
 * @param output the stream of audio
 * samples representing the input
 */
static void encodeStream(InputStream in,
                         OutputStream out){
 int readindex = 0;
 byte[] buff=new byte[kBytesPerDuration];
 while (  (readindex = in.read(buff))
        == kBytesPerDuration) {
  out.write(Encoder.encodeDuration(buff));
 }
 if (readindex > 0) {
   for (int i=readindex;
        i < kBytesPerDuration;
        i++)
     buff[i] = 0;
   out.write(Encoder.encodeDuration(buff));
 }
}

4.1.2 Extreme 2: English Sugar-Coat (version 2)
Now consider the following description using English.  This
English sugarcoat represents the other extreme (and is not
what we advocate.)

encodeStream service
Summary: it converts a given stream of bytes
into sounds
It requires the following:
 An InputStream object known as in; it
  is supposed to contain the stream of bytes
  to encode.
 An OutputStream object known as out; it
  will be filled with the stream of audio
  samples representing the input.
It returns nothing
It is implemented as follows:
 . Create an integer called readindex and
   initialize it to zero.
 . Create an array of kBytesPerDuration
   bytes called buff.
 . A loop begins:
   . Request the service read from in,
     with argument buff; set readindex to
     the return value of this service.

   . If readindex is equal to
     kBytesPerDuration, then
     . Request the service write from
       out; the argument to this service
       is the return value of
       . Request the service encodeDuration
         from Encoder, with argument buff.
  End of loop.
  . If readindex is greater than 0 then
    . Set to zero all positions of buff
      starting at readindex.
    . Request the service write from out;
      the argument to this service is the
      return value of
      . Request the service encodeDuration
        from Encoder, with argument buff.

This description follows a similar philosophy to that of
Hypertalk [60] and NaturalJava [53]. It is not much more than
syntactic sugar over the Java programming model and
language. Not only doesn’t it help in understanding the
implementation, but it is likely to be even worse for
understanding a complex application, because it’s a lot more
verbose than the Java program. It misses the point.

4.1.3 Something Else: Focus on the “Natural”
Way of Describing What We Want (version 3)
Finally consider this third version.

/**
 * encodeStream converts a given stream of
 * bytes into sounds.
 * @param input the stream of bytes to
 * encode
 * @param output the stream of audio
 * samples representing the input
 */
encodeStream(InputStream in,
             OutputStream out) {
  while there is data in in:
    read the first N bytes from it;
    perform encodeDuration on those bytes
    and write the result into out.

  if, however, after reading the input,
    the number of bytes read is less than N,
    then, before continuing, patch the
    resulting byte array of size N with
    zeros.

Let’s assume for a moment this language can be implemented
as is. The reader will probably agree that this version is the one
that most concisely describes the intent of the
implementation. This text could probably be easily
implemented. What’s valuable in this version is that it not
only reads like English, but, moreover, organizes the ideas in a
“natural” way and without “distracting” elements. The next
section will analyze these points.

4.2 Analysis of the Target Language
Let’s analyze the program in version 3 and compare it to
versions 1 and 2.



•  Versions 1 and 2 dwell in details of handling temporary
variables; the last version doesn’t mention any variables.
o  Instead of buff, it uses the natural dynamic binding

“those bytes,” which, according to standard English,
refers to the bytes mentioned in the previous
sentence.

o Readindex is made redundant. This is because it was
only there in the first place to cope with the
exceptional case of when the input stream returns
less bytes than what we asked for.

•  Version 3 makes use of a reflective element: “this last
operation.” We consider this to be a reflective element,
because it exposes knowledge about the underlying
execution of the program by mentioning “operation.”

•  Most importantly, version 3 uses a subtly different
organization of ideas. Namely, it first states the normal
cases (i.e., we get the number of bytes we ask for out of the
input stream), and only afterwards states how to handle
the special case (i.e., we get less than what we ask for). In
this case, the binding of the special case sentence with the
place in the computational process where the special case
might occur is done with the expression “after reading the
input stream.”  

The third point must be carefully analyzed, because i t
embodies what we think are the most novel contributions of
this proposal that can transform for the better the way people
express ideas in programming.

These sorts of bindings, called anaphora in linguistics, are
pervasive and perfectly natural when people speak and write
documents. They are also natural ways of thinking about
computational processes. However, existing programming
languages lack appropriate support for them.

Existing programming languages are based on the premise that
each statement, expression or function is a little “black box”
that relates to the rest of the program through an input-output
interface. This premise is made very clear in functional
programming languages that reduce everything, including
other languages’ constructs, to functions. As a consequence,
programmers are forced to stream their intentions into a series
of sequential steps aligned with this very narrow pipeline view
of the world.

So in this case, in the first two versions of the encodeStream
function, the test of whether the read of the input stream
returned less than expected is stated immediately after
performing the read operation. This splits an important
semantic unit––the occurrence and handling of the special
case––in two statements whose relation is loosely established
by the variable readindex:

 while (  (readindex = in.read(buff))
        == kBytesPerDuration) {
  out.write(Encoder.encodeDuration(buff));
 }
 if (readindex > 0) {
   for (int i=readindex;
        i < kBytesPerDuration;
        i++)
     buff[i] = 0;
   out.write(Encoder.encodeDuration(buff));
 }

As a consequence of this split, the write operation is repeated
twice in the program text, once in the loop and again in the
conditional that follows it. This is typical in existing
programs, and it’s extremely bad from an evolution point of
view: when a specification changes, programmers must find all
these redundant places and fix them by hand.

In this case, this redundancy could be avoided by using a do-
statement like this one:

do {
  if ( (readindex = input.read(buff))
      < kBytesPerDuration)
    if (readindex > 0)
      for (int i=readindex;
           i < kBytesPerDuration;
           i++)
        buff[i] = 0;

  out.write(Encoder.encodeDuration(buff));
} while (readindex == kBytesPerDuration);

But in this case, the test of the value of readindex happens
twice in each iteration of the loop rather than once.
Furthermore, this organization emphasizes the special case:
because of all those tests in the beginning, we can hardly
notice what the loop is actually supposed to do most of the
times. This is also typical and also bad.

In this pipeline view of the world, there is no way of refining a
statement or expression or function at a later point in the
program text. Yet, this refinement happens pervasively in
written discourse. The existing programming languages have a
very shallow support for structural referencing and a complete
lack of support for temporal referencing.

In version 3, the test is stated as another sentence outside the
lexical scope of the loop where the read occurs. The binding
expression is “after reading the input stream”. We can evaluate
this expression unambiguously, in that we immediately
understand that this expression refers to a point in time that
has been established in the previous sentence “read … from
the input stream.” A programming language processor can also
evaluate this expression correctly, if we make it do it.

4.3 Placing this “Language” into Perspective
There are two aspects pertaining to referencing: what to refer to
and how to refer to it. This is, in fact, one of the most basic
design decisions of any programming language. Programming
languages have been highly biased in this decision. Here are
some examples of things that are referred to. In low-level
assembly languages, the what consists of registers and
memory cells; in functional languages, it consists of functions
and variables; in OOP languages, it consists of objects (very
well-defined entities with a precise form), fields, variables and,
when inheritance is included, classes. In typed languages,
types are also part of what can be referred to. The mechanisms
to refer to things vary from the use of syntactic forms to the
explicit application of binding functions.

In contrast, Natural Languages have a much less well-defined
set of things that can be referred to. In fact, the best word to
describe what we can refer to is thing, which can be just about
anything. It can be the computer memory and registers, for



example; or functions and variables; or OOP’s objects and
classes; or types. But it goes way beyond these. It can be sets
of things; it can be points in time; it can be “the previous
paragraph” and “all sections of this paper.” However, Natural
Languages aren’t as chaotic as it seems. Things tend to fall
into a small number of classes. They can be structures, actions
or time (many kinds of all of these).

The challenge in taking Natural Languages as the basis to
producing a programming language is to decide which things
should be referenceable in the context of computer
programming, given the wide range of application domains.
We should keep in mind that a naturalistic language should
have an important property of most modern programming
languages: it should be possible to construct abstractions on
top of a relatively small number of primitive abstractions.
Ideally, each application domain would build its own
terminology and idioms, similar to what happens with Java
APIs and similar to Natural Languages’ dictionaries. What we
propose here is that such primitive abstractions should be
inferred from wider ground of Linguistics, rather than from
computer engineering or mathematics or ad-hoc models such
as objects. We propose this based on the fact that Natural
Language comes before, and supports, all other domain-
specific formal languages.

On a pragmatic vein, one fact has been clearly exposed by the
wide adoption of Aspect-Oriented Programming: reflective and
temporal references are important elements in programming. It
is therefore logical to explore them even further. In our
approach, we go back to the original, and more general, AOP
idea described in [20]. For example, unlike AspectJ, statement-
level anaphora, such as the one presented in the working
example in Section 4.1.3, should be considered.

A more profound difference is that the emphasis in AOP was
put on separation of aspects and components, and the
reusability of aspects by different components. That design
feature came from D and has proved to be very useful in
practice, especially for development aspects such as tracing
and profiling that are later removed from the final software
product. However, because of that emphasis, the binding
mechanisms in AspectJ don’t use context information that
could naturally be used. For example, expressions such as “the
last operation” and “those bytes” “after reading [in a certain
context]” should be supported. The emphasis should be the
exploration of a variety of structural and temporal anaphora,
some of which are captured by AspectJ, but most of which are
not.

The anaphoric relations targeted here include not only intra-
module referencing but also inter-module referencing. This
may challenge the principle of modular programming. But,
similar to what happens in AOP, if breaking the principle
proves to be useful, then it means that the principle itself
needs to be reformulated.

4.4 What This “Language” Is Not
The languages we’re advocating are not for “end-user
programming” (see related work section 5.4). While we believe
that programs written in a naturalistic language will be more
readable to non-programmers, our goal is not primarily to
enable non-programmers to write computer programs. Nor is i t
for “natural language programming,” an idea that has been
around for some decades and that has been instantiated
occasionally (e.g., [55], [2], [42], [60], [53]). We don’t advocate

implementing English! The languages we are proposing are
naturalistic, but not natural. However, they will take their
direction from the structure and expressiveness of natural
languages rather than from the idealized models of traditional
programming languages.

5. RELATED WORK
The ideas presented here have their roots in Aspect-Oriented
Programming and the lessons we’ve learned from it. However,
there are several fields of research, some of them considerably
more mature than AOP, to which we must pay special attention.

5.1 Anaphoric Relations and Binding Theory
Researchers in computational linguistics and natural language
processing have developed a sophisticated array of approaches
to some of the problems that we are addressing, in the forms in
which they occur in natural language. Anaphorical reference
within natural language is the domain of binding theory,
which draws its roots from Chomsky's pioneering work [8].
The problem that binding theory addresses is how to relate
anaphoric expressions to their references; binding principles
describe the relative positions of anaphors and their
admissible antecedents in grammatical structure [4].
Chomsky's work proceeds from the observation that the two
primary forms of anaphora (pronouns and anaphors, which are
more complex referential expressions) correspond to forms
(WH-movement and NP-movement) of syntactic movement.
Alternative approaches to formal grammar, such as Head-
driven Phrase Structure Grammar (HPSG), Lexical-Functional
Grammar (LFG), or Categorial Unification Grammar (CUG), also
must incorporate alternative, non-transformational (and less
purely syntactic) accounts of anaphora (e.g., [51], [52], [7]).

While this work is clearly relevant, dealing as it does with the
processing of richly expressive referential phrases of the sort
that we would like to exploit, it’s critical to recognize the
difference between the analysis of naturally-occurring
language, such as NLP must address, and the processing of
restricted, formal, and artificial languages of the sort that we
aim to develop. While there is much to learn from the natural
handling of anaphoric reference, the language that we seek to
develop is naturalistic but not natural. Therefore, our
challenge is not to account for anaphora, but to exploit it,
which reduces the challenge considerably.

5.2 Temporal Logic Programming
Most programming models and languages lack mechanisms
for temporal reference. The notable exception is the work
within the community of logic programming and the language
generally associated with it, Prolog. Temporal logic
programming has been proposed to reason about hardware and
software systems (e.g., [50]). It has been used in the
specification (e.g., [18], [29]), verification (e.g., [40], [46]), and
synthesis (e.g., [12], [40]) of concurrent systems, as well as in
the synthesis of robot plans (e.g., [14]). For a survey on
temporal and modal logic programming languages, the reader
may refer to [45].

While this work is relevant, its purpose is quite different from
that of the work proposed here. Logic programming, in general,
and temporal logic programming, in particular, focus on
writing programs upon which certain theorems can be proved.
While there are some lessons to be learned from formal
specifications of time-dependent symbols in temporal logic,



the language we seek to develop doesn’t attempt at being used
for proving theorems about the programs.

5.3 Cognitive Foundations of Programming
Languages
The question of the degree of expressiveness afforded by
programming languages, and the effectiveness of the notations
in which programs are expressed, has been a topic of research
investigation for some time. For example, studies in the
psychology of programming have explored a range of issues
including expert/novice differences in programming strategies
[59], mental imagery used by programmers in thinking about
programs [49], and the relationship of cognitive strategies to
language features [58].

The use of intelligent systems to support learning
programming languages has been the focus of a major research
effort in the AI in Education community. In particular, a
significant body of research, particularly arising in the UK, has
investigated students’ understandings of Prolog programs
([3], [5], [6], [11]). Prolog is a particularly interesting language
to study, for a variety of reasons. First, for programmers used
to procedural or functional styles, the declarative model that
Prolog embodies can be a major challenge. Second, Prolog,
being based on a logical calculus, has a superficial naturalism
that can make it initially accessible to novice programmers.
Third, for those novice programmers, Prolog rapidly becomes
much more complex as the semantics of more advanced
features such as “cuts” requires them to reconceptualize Prolog
programs in terms of the sequential organization of search
rather than in terms of a purely declarative formalism. These
studies highlight the mutual influence of programming
language structure and conceptual understandings on the part
of its users.

One of the most influential analyses of the usability of
programming languages is Greene’s “cognitive dimensions”
framework for notations ([15], [17]). The cognitive dimensions
highlight the properties of notations in terms of the cognitive
activities that they support, and so illuminate the questions of
how and why notations “work” for particular sorts of tasks. For
example, the dimension of viscosity [16] refers to a notation’s
resistance to change, and more generally, the complexity of
making a single revision. A simple illustration of viscosity
might be the insertion of a clause, such as an if or a while,
around a block of code in a language that uses indentation to
express structure (as in Python or Occam.) In these languages,
encapsulating code inside a particular block involves
changing the indentation of each newly-enclosed line of code.
The notational device of using indentation to indicate block
structure, then, has greater viscosity than the more
conventional practice of indicating structure by using
brackets. (However, the bracket approach may reduce visibility
– the at-a-glance readability of the notation.) Greene and his
collaborators have identified a range of relevant cognitive
dimensions of notations, including premature commitment
and role-expressiveness. The critical element of Greene’s
analysis is that it seems programs not simply as specifications
of computer behavior, but as artifacts that people have to
manipulate. It highlights the relationship between the program
and the act of programming. Likewise, our approach is more
concerned with expressiveness for the programmer rather than
expressiveness for the computer.

In an effort to develop programming representations that
bridge “the expressiveness gap,” Pane ([47], [48]) studied the
natural language descriptions of programming language tasks
given by non-programmers. Pane was particularly interested in
children’s use of programming languages, although his
methods and perhaps some of his findings apply more
broadly. In an experimental setting, he had people give
descriptions of programmatic behavior (in particular, the
program for a Pacman-like game) and analyzed the forms of
description that people produced. His findings pointed to a
range of linguistic expressions by which people would
describe the program’s behavior, but which are poorly
supported in conventional programming languages. For
example, where people often produce complex grouping
statements (such as “all the red objects” or “the objects on this
side of the screen”), programming languages tend not to offer
facilities for such dynamic groups, requiring iterative testing
instead. Pane then went on to develop a programming
language incorporating some of these elements.

In addition to the empirical approach that characterizes Pane’s
work, we feel that a theoretical grounding will be important for
successfully developing this research. One promising and
intriguing approach that we are beginning to explore in some
preliminary work is the cognitive semantics perspective
developed by Lakoff and others ([24], [25], [26]). Lakoff is a
linguist and cognitive scientist whose work for many years
has focused on the relationship between linguistic practice
and cognitive capabilities. In particular, his studies of
categorization (how people define and use classifications and
categories) and of metaphor have begun to uncover a new way
of understanding cognition. The central claim of cognitive
semantics is that metaphor, rather than being a purely literary
device, is in fact a central element of cognitive function.
Metaphors typically occur not as individual elements of
linguistic practice, but as entire systems of metaphors that
relate different areas of experience. For example, the metaphor
“LOVE IS A JOURNEY” reveals a complex structural mapping
between domains, in which lovers are mapped to travelers, a
relationship is mapped to a vehicle, shared goals are mapped
to destinations, etc., and which accounts for a range of
linguistic expressions such as “our relationship has hit a dead
end,” “I don’t think we’re going anywhere,” “we’re in high
gear,” “we were in the fast lane,” “we hit a bump,” “our
relationship is on the rocks,” etc. Through a series of detailed
analyses, researchers in cognitive semantics have detailed the
ways in which cognition is built upon a system of structural
mappings between domains, of which these expressions are
symptomatic. This applies not only to everyday cognition, but
to more complex and abstract domains of reasoning which
they demonstrate to be based through this metaphorical
relation to embodied physical experience. Domains of
application have included mathematics [28] and philosophy
[27]. Our In some preliminary work, we are is beginning to
explore the metaphorical structure of computer science, by
analyzing the language used to describe and express
computational concepts. This research suggests that the
metaphorical model of cognition plays a strong role in
Computer Science just as it does in other areas of reasining;
metaphors of embodied experience such as “ITERATION IS
MOVEMENT” and “DATA STRUCTURES ARE CONTAINERS”
provide the foundation on which cognitive understanding of
computation is based. We anticipate that these understandings
will support the development of a language that i s
appropriately matched to everyday cognition.



5.4 End-User Programming
Although it is not the focus of our work, end-user
programming is a related area of research because of its
concern with forms of expression. End-user programming i s
inspired by the dual observations that, first, most software
systems must be adapted by users, to some extent, to fit into
their actual work; and, second, that although most people do
not engage in programming in traditional languages, they
certainly are adept at using many formal schemes. Nardi [43]
discusses the use of such formal representations as knitting
patterns and baseball scoring systems, and argues that there
may be alternative formalisms which, suitably embedded in
practice, will allow end-users to customize, program and adapt
software systems; she cites the example of spreadsheet
programming as an example [44]. Lave [30] has similarly
observed that people who have difficulty with, say,
mathematics in learning situations nonetheless can perform
complex calculations in domains of everyday experience such
as comparison shopping, currency exchange or calculating
gambling odds.

One formalism that has been explored, especially in the area of
programming environments for children, is graphical rewrite
rules. KidSim [10] (subsequently called Cocoa and marketed
as Stagecast Creator) and AgentSheets [54] are both systems
for building interactive simulations based on graphical rule
systems, and both have been successful, albeit in limited areas.
Others have explored the use of Programming By
Demonstration as a means to specify the behavior of software
systems ([9], [33]). Programming by demonstration allows
users to specify software systems through concrete operations
rather than abstract description; however, the twin difficulties
of generating appropriate generalizations and of conveying
potential future activity to users have largely resulted in
systems that are tightly coupled to specific domains, which
have limited the uptake of the approach.

These approaches suggest that, despite decades of research
into programming language design, there is still a great deal to
learn not just about languages, but about programming, and
especially about the relationship between the two. While those
concerned with domain-specific languages or end-user
programming have attempted to understand this relationship
in order to make programming available to new communities
of users, we believe that they are equally applicable to
traditional programming practice.

6. CONCLUSION
The main goal of this paper was to re-generate some discussion
around the role of Natural Languages in Programming
Language design, and we tried to give a solid frame for this
discussion. We believe this is an important topic for the
problem of program understanding. The “end units” of any
program are not only the microprocessors but also the human
programmers. As such, it is only logical to take a serious look
at the main form of human communication, namely Natural
Languages. The power of Natural Languages is not so much the
syntax but the way they allow us to organize ideas in “natural”
ways. It is so much so that Natural Languages are, in fact, the
primitive support for all other formal languages such as
mathematical formalisms or microprocessor instructions. In
other words, everything that can be expressed in those formal
languages can be expressed in English, and not the other way
around. This expressive power of Natural Languages is, to a

great extent, supported by their sophisticated referencing and
binding mechanisms, and those are precisely the focus of this
paper.

We gave an informal example of a naturalistic programming
language and analyzed some of its properties. At this point,
this programming language is rather fuzzy, and many of the
details will need to be worked out.

Further work includes a careful look at Linguistics and the
existing models of Natural Languages. We will be looking for
a variety of anaphora such as (1) pronouns, e.g. this, that, it,
those, etc.; (2) object referents, e.g. the input stream, non-
empty streams, etc.; (3) temporal referents, e.g. last, first, after
reading, before encoding, etc.; (4) group referents, e.g. all, any;
and (5) reflective referents, e.g. iteration, loop, operation, etc.
We hope this study will give a solid framework for identifying
primitive language mechanisms upon which we can design
powerful programming languages that support not only a
variety of programming models but also, and more
importantly, natural program organizations within those
models.
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