
“Breaking the Code”, Moving between Private and
Public Work in Collaborative Software Development

Cleidson R. B. de Souza1,2 David Redmiles1 Paul Dourish1

1School of Information and Computer Science
University of California, Irvine

Irvine, CA, USA – 92667

2Departamento de Informática
Universidade Federal do Pará

Belém, PA, Brazil - 66075
{cdesouza,redmiles,jpd}@ics.uci.edu

ABSTRACT
Software development is typically cooperative endeavor where
a group of engineers need to work together to achieve a
common, coordinated result. As a cooperative effort, it i s
especially difficult because of the many interdependencies
amongst the artifacts created during the process. This has lead
software engineers to create tools, such as configuration
management tools, that isolate developers from the effects of
each other’s work. In so doing, these tools create a distinction
between private and public aspects of work of the developer.
Technical support is provided to these aspects as well as for
transitions between them. However, we present empirical
material collected from a software development team that
suggests that the transition from private to public work needs
to be more carefully handled. Indeed, the analysis of our
material suggests that different formal and informal work
practices are adopted by the developers to allow a delicate
transition, where software developers are not largely affected by
the emergent public work. Finally, we discuss how groupware
tools might support this transition.

Categories and Subject Descriptors
H.4.1 [Office Automation]: Groupware; H.5.3 [Group and
Organization Interfaces]: Computer-supported cooperative
work;

General Terms
Human Factors

Keywords
Private work, public work, collaborative software development,
qualitative studies.

1. INTRODUCTION
Software engineers have sought for quite some time to
understand their own work of software development as an
important instance of cooperative work, especially seeking
ways to provide better software tools to support developers [6].

Indeed, they created several different tools, such as
configuration management (CM) and bug tracking systems, to
facilitate the coordination of groups of developers [14].
However, software development is especially difficult as a
cooperative endeavor because of the several interdependencies
that arise in any software development effort. To minimize
these problems, current CM systems adopt design constructs
(like workspaces and branches used in configuration
management systems) to shield each individual from effects of
other developers’ work [5]. These workspaces enforce a
distinction between the private aspects of work developed by a
software engineer and the public aspects that occur when this
developer shares his work with other developers. Similar
approaches have been taken in other categories of collaborative
applications (e.g., collaborative writing and hypermedia
systems), which have adopted this distinction between private
and public work in order to facilitate collaboration. In these
applications, this is usually done through the provision of
separate private and public (or shared) workspaces. Private
workspaces allow users to work in different parts of a document
in parallel and contain information that only one user can see
and edit allowing him to create drafts that later will be shared
with the other co-workers [7]. On the other hand, public
workspaces allow all users to share the same information or
document and edit it concurrently.

When support for private and public work is provided, it is also
necessary to support transitions between them. The central
issue in systems maintaining separate workspaces is how
information or activity moves between them, and similarly, the
central mechanism around which CM systems are built is the
mechanism for moving information between public and private
conditions – checking in, checking out, merging. In
cooperative working settings, people selectively choose when
and how to disclosure their private work to others, i.e., they
want to be able to control the emergence of public information
[1, 26]. CM tools and collaborative authoring tools provide
support for these transitions. In collaborative writing, for
example, one can basically copy the content of a private
workspace and paste into the public workspace. On the other
hand, in CM systems, more sophisticated tools involving
merging algorithms and concurrency control policies need to
be used because of the aforementioned interdependencies in the
software.

Transitions between private and public work (and vice-versa)
are particularly important in cooperative work and can lead to
problematic situations when overlooked. Indeed, Sellen and
Harper [28] describe case studies of companies that had
problems because they underestimated the delicacy of this
transition. Despite that, insufficient analytical attention has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

GROUP’03, November 9–12, 2003, Sanibel Island, Florida, USA.

Copyright 2003 ACM 1-58113-693-5/03/0011…$5.00.

been given to this transition by the CSCW community. In this
paper, we will examine this issue with empirical material
collected from a collaborative software development effort. The
team observed uses mostly three tools for coordination
purposes: a configuration management tool, a bug-tracking
system, and e-mail. However, these tools alone were not
sufficient to effectively support the team; participants needed
to adopt a set of formal and informal work practices to properly
support private, public work and transitions between them. The
adoption of these different work practices suggests that the
computational support provided by these systems to support
the emergence of private information is still unsatisfactory.
Based on these results, we draw more general conclusions about
the implications for computer-supported cooperative work.

The rest of the paper is organized as follow. The next section
discusses the idea of private and public work in computer-
supported cooperative work. Then, sections 3 and 4 present the
settings and the methods that we used to study the software
development team. After that, Section 5 describes the set of
work practices adopted by the team to properly deal with
private, public work and transitions between them. Section 6
presents our discussion about the data that we collected. After
that, Section 7 discusses implications of our findings in the
design of CSCW tools. Finally, conclusions and ideas for
future work are presented.

2. PRIVATE AND PUBLIC WORK
In this paper we examine the distinction between private and
public work in collaborative efforts. The need for this
distinction is widely recognized in CSCW research. According
to Ackerman [1], for example, people “(…) have very nuanced
behavior concerning how and with whom they wish to share
information (…) people are concerned about whether to release
this piece of information to that person at this time (…)”.
Another reason that makes people care about the release of
information about them is that they “(…) are aware that making
their work visible may also open them to criticism or
management (…)” (ibid.). Furthermore, one does not make his
entire work visible because he wants to appear competent in the
eyes of colleagues and managers by making their work more
complicated than necessary [26]. Indeed, people are not
interested in all information that is provided to them. As
Schmidt [26] points out:

“(…) in depending on the activities of others, we are ‘not
interested’ in the enormous contingencies and infinitely
faceted practices of colleagues unless they may impact our
own work (…) An actor will thus routinely expect not to be
exposed to the myriad detailed activities by means of which his
or her colleagues deal with the contingencies they are facing
in their effort to ensure that their individual contributions
are seamlessly articulated with the other contributions.”

To summarize, people have several contextualized and different
strategies to release their private information, and they expect
that others will do the same, not overloading them with public
information that is not ‘relevant’ to their current context or
activity. Note that this private information might be
collaboratively constructed [16]. In this case, the information
is public for those involved in its “construction”, but it i s
private to the other members of the cooperative effort.

CSCW researchers have already recognized the need to support
these findings. Indeed, a typical approach to address that is to

provide support for private and public (also called shared)
windows, or workspaces, to support the collaboration among
users [30]. Private workspaces allow users to work in different
parts of a document in parallel and contain information that
only one user can see and edit, allowing him to create drafts
that later will be shared with the other co-workers [7]. On the
other hand, public workspaces allow all users to share the same
information or document so that, changes in the document are
automatically visible to all users. The usage of these
workspaces mimic conventions carried over non-technological
work, where no one wants to search or look at anyone’s private
desk or drawer, and conversely wants no one to search theirs,
but accepts that when they occur in public spaces. Indeed, Mark
and colleagues [21] report how conventions about the use of
private and public workspaces implicitly evolved from
conventions formed in face-to-face non-technological work
after the introduction of a groupware tool.

Often, other mechanisms are present in collaborative systems to
make other actions’ visible as well. For example, grey ‘clouds’
were proposed in the collaborative editor Grove to indicate
where other co-writers are editing the text [9]. Furthermore, it i s
also well-known that, in some settings, making others’ work
public facilitates the coordination of the activities [16] [17]
and enables learning and greater efficiencies [20]. Examples of
tools that explore such approaches include Portholes [8] and
Babble [10].

The underlying distinction between private and public work
also implies that in collaborative efforts transitions between
these two aspects occur. However, while notions of “public”
and “private” have been incorporated into software system
design, insufficient analytical attention has been give to the
transitions. Field studies such as those of Bowers [4] or Sellen
and Harper [28] demonstrate that overlooking these transitions
can be problematic. In Bower’s study, the disclosure of private
data brought about dilemmas of ownership and responsibility
among the employees of the organization studied. In Sellen and
Harper’s study, when the companies tried to go paperless
deploying a new information system, the employees’ ability to
control when to disclosure information was lost and these
employees boycotted the system. This happened because paper,
as a medium on which work was performed, allowed their owners
to avoid sharing information with their co-workers until they
felt that the information was “ready”.

Note that the setting where the collaborative effort takes place
is important. For example, in a control room, all workers are
collocated, which allows them to use intonations in their voice
and/or body language to make their actions visible to other co-
workers [17]. On the other hand, Whittaker and Schwarz [34]
report an ethnographic study where a large wallboard
(containing the schedule of a software development project) i s
used by the team, which is spread along different cubicles and
offices. The public location of this wallboard allowed
developers to access information about who was doing which
tasks at which times, among other things. In other words, in
this setting, information about others’ current actions was
made public by checking and updating the schedule displayed
in the wallboard.

In collaborative software engineering, this distinction between
private and private work is not only desirable, but necessary
and often enforced by tools. This occurs because of the several
interdependencies that arise in any software development
effort. In other words, each part of the software depends,

directly or indirectly, on many other parts. Furthermore, these
interdependencies are not strictly defined in the artifacts
produced, and often are not even known by the developers. To
handle this problem, software engineers created tools, such as
configuration management (CM) and bug tracking systems, to
facilitate the coordination of groups of developers [14].
Current CM systems adopt design constructs (like workspaces
and branches) to shield the work of individuals from effects of
other developers’ work [5]. Basically, these workspaces “create
a barrier that prevents developers from knowing which other
developers change which other artifacts” [25]. Therefore, CM
workspaces allow software developers to work privately.
Furthermore, CM systems provide mechanisms to support the
transition from private to public work when developers want to
make this transition. To be more specific, when a developer
finishes his work in his private workspace, he can publicize his
work to other software developers through check-in’s, check-
out’s and merging operations. Despite this support, several
problems arise in any software development effort. Indeed,
based on empirical data that we collected, we identified a set of
formal and informal work practices used by a team of software
developers to handle these problems. The setting where the data
was collected and the methods used to analyze this data are
described in the following section.

3. THE SETTING
The team studied is located at the NASA / Ames Research Center
and develops a software application we will call MVP (not the
real name), which is composed of ten different tools in
approximately one million lines of C and C++. Each one of
these tools uses a specific set of “processes.” A process for the
MVP team is a program that runs with the appropriate run-time
options and it is not formally related with the concept of
processes in operating systems and/or distributed systems.
Processes typically run on distributed Sun workstations and
communicate using a TCP/IP socket protocol. Running a tool
means running the processes required by this tool, with their
appropriate run-time options.

Processes are also used to divide the work, i.e., each developer
is assigned to one or more processes and tends to specialize on
it. For example, there are process leaders and process
developers, who, most of the time, work only with this process.
This is an important aspect because it allows these developers
to deeply understand the process behavior and familiarize with
its structure, therefore helping them in dealing with the
complexity of the code. During the development activity,
managers tend to assign work according to these processes to
facilitate this learning process. However, it is not unusual to
find developers working in different processes. This might
happen due to different circumstances. For example, before
launching a new release all workforce is needed to fix bugs in
the code, therefore, developers might be assigned to fix these
bugs.

3.1 The Software Development Team
The software development team is divided into two groups: the
verification and validation (V&V) staff and the developers. The
developers are responsible for writing new code, for bug fixing,
and adding new features. This group is composed of 25
members, three of whom are also researchers that write their own
code to explore new ideas. The experience of these developers
with software development range between 3 months to more

than 25 years. Experience within the MVP group ranges
anywhere between 2_ months to 9 years. This group is spread
out into several offices across two floors in the same building.

V&V members are responsible for testing and reporting bugs
identified in the MVP software, keeping a running version of
the software for demonstration purposes and for maintaining
the documentation (mainly user manuals) of the software. This
group is composed of 6 members. Half of this group is located
in the V & V Laboratory, while the rest is located in several
offices located in the same floor and building as this
laboratory. Both, the V&V Lab and developers’ offices are
located in the same building.

3.2 The Software Development Process
The MVP group adopts a formal software development process
that prescribes the steps that need to be performed by the
developers during their activities. For example, all developers,
after finishing the implementation of a change, should
integrate their code with the main baseline. In addition, each
developer is responsible for testing its code to guarantee that
when he integrates his changes, he will not insert bugs in the
software, or, “break the code”, as informally characterized by
the MVP developers. Another part of the process prescribes
that, after checking-in files in the repository, a developer must
send e-mail to the software development mailing list
describing the problem report associated with the changes, the
files that were changed, the branch where the check-in will be
performed among other pieces of information.

The MVP software process also prescribes the usage of code
reviews before the integration of any change, and design
reviews for major changes in the software. Code reviews are
performed by the manager of each process. Therefore, if a
change involves, e.g. two processes, a developer’s code will be
reviewed twice: one by each manager of these two processes. On
the other hand, design reviews are recommended for changes
that involve major reorganizations of the source code. Their
need is decided by the software manager usually during the bi-
weekly software developers meeting (called pre-design
meetings).

3.3 Software Development Tools: CM and
Bug tracking
MVP developers employ two software development tools for
coordinating their work: a configuration management system
and a bug tracking system. Of course, other tools are used such
as CASE tools, compilers, linkers, debuggers and source-code
editors, but the CM and bug-tracking tools are the primary
means of coordination [5] [12] [14]. These tools are integrated
so that there is a link between the PR’s (in the bug tracking
system) and the respective changes in the source-code (in the
CM tool). Both tools are provided by one of the leader vendors
in the market.

A CM tool supports the management of source-code
dependencies through its embedded building mechanisms that
indicate which parts of the code need to be recompiled when
one file is modified. To be more specific, CM tools support
both compile-time dependencies, i.e., dependencies that occur
when a sub-system is being compiled; and build-time
dependencies that occur when several sub-systems or the entire
system is being linked [12]. A bug tracking tool, when

associated with the CM tool, supports the tracking of changes
performed in the source code during the development effort.

It is important to mention that the MVP team employs several
advanced features of the CM tool such as triggers, techniques
to reduce compilation time, labeling and branching strategies.
Indeed, the branching strategy employed is one of the most
important aspects of a CM tool because it affects the work of
any group of software developers. This strategy is a way of
deciding when and why to branch, which makes the task of
coordinating parallel changes easier or more difficult [33].
According to the nomenclature proposed by Walrad and Strom
[33], the following branching strategies are used by the MVP
team: (1) b r a n c h - b y - p u r p o s e , where all bug fixes,
enhancements and other changes in the code are implemented
on separated branches; (2) branch-by-project, where branches
are created for some of the development projects; and (3)
branch-by-release, where the code branches upon a decision to
release a new version of the product. The branch-by-purpose
strategy is employed by MVP developers in their daily work,
while the other strategies are only used by the CM manager. In
other words, developers create new branches for each new bug
fix or enhancement, while branches for projects and releases are
created by the manager only. The branch-by-purpose strategy
supports a high degree of parallel development but at the cost
of more complex and frequent integration work [33]. According
to this strategy, each developer is responsible for integrating
his changes into the main code. This approach is often called
“push integration” [2]. After that, the changes are available to
all other developers. Therefore, if one bug is introduced, other
developers will notice this problem because their work will be
disrupted. Indeed, we observed and collected reports of
different instances of this situation. When one developer
suspects that there is a problem introduced by recent changes,
he will contact the author of the changes asking him or her to
check the change, or for more information about it.

4. METHODS
The first author spent eight weeks during the summer of 2002
as a member of the MVP team. As a member of this team, he was
able to make observations and collect information about
several aspects of the team. He also talked with his colleagues
to learn more about their work. Additional material was
collected by reading manuals of the MVP tools, manuals of the
software development tools used, formal documents (like the
description of the software development process and the ISO
9001 procedures), training documentation for new developers,
problem reports (PR’s), and so on.

All the members of the MVP team agreed with the author’s data
collection. Furthermore, some of the team members agreed to let
the intern shadow them for a few days so that he could learn
about their functions and responsibilities better. These team
members belonged to different groups and played diverse roles
in the MVP team: the documentation expert, some V&V
members, leaders, and developers. We sampled among MVP
“processes”, developers’ experience in software development
and with MVP tools (and processes) in order to get a broader
overview of the work being performed at the site. A subset of
MVP group was interviewed according to their availability. We
again sampled them according to the dimensions explained
above. Interviews lasted between 45 and 120 minutes. To
summarize, the data collected consists in a set of notes that
resulted from conversations, documents and observations

based on shadowing developers. These notes have been
analyzed using grounded theory techniques [31].

5 . PRIVATE AND PUBLIC WORK IN
SOFTWARE DEVELOPMENT
As mentioned before, software development tools like
configuration management systems support private, public
work, and transitions between them. Despite using a CM system
the MVP team faced several problems when dealing with these
aspects. In this section, we present the formal and informal
approaches adopted by this team in order to properly perform
their work, i.e. develop software. In the sections that follow, we
will explore these situations separately: private work, the
transition from private to public, public work, and the
transition from public to private.

5.1 Private Work
Configuration management tools allow developers to work
privately through the implementation of workspaces and
branches [5]. These workspaces isolate the changes being
created by one developer from other parts of the code. In this
case, a developer’s ‘work-in-progress’ is not shared with other
developers. Furthermore, these workspaces allow a developer to
work without being affected by the changes of other
developers. Indeed, when new changes are committed in the
repository by other developers, the CM tool lets the user decide
if he or she wants to grab these changes. In case one wants to
incorporate the changes, he may recompile the software using
the embedded building mechanisms on these tools. In case a
developer does not want to incorporate the changes, one can
continue working and, if necessary, recompile the software with
the appropriate run-time options that do not grab these new
changes. Of course, this is a risky course of action because i t
might lead the developer to work with an outdated version of
the files, which might potentially make his work less
ineffective.

Mechanisms embedded in CM tools are able to identify
syntactic conflicts between the developer’s ‘work-in-progress’
and the changes committed into the repository, reporting
whether or not the ‘work-in-progress’ is affected by these
changes. However, because CM systems rely on syntactic
features of the domain such as files, suffixes and lines of code,
they can not identify semantic conflicts [11]. This means that
except for these conflicts, current configuration management
systems provide extensive and automated support for
maintaining the isolation between the work performed by one
person from other’s work [5].

However, when software developers engage in parallel
development, problems arise in the CM tool. Parallel
development happens when more than one developer needs to
make changes in the same file. This means that the same file i s
checked-out by different developers and all of them are making
changes in the different copies of this file in their respective
workspaces. As one might imagine, parallel development might
lead to conflicts. They might occur when one developer checks-
in his changed version of the file back in the repository,
because the versions of the other developers will become
outdated. In this case, the changes of these developers might
become inappropriate because they are based on a code that i s
not the latest. To solve this problem, a developer needs to
update his version of the file by merging the other developer’s

changes into his code. The developers term this operation
“back merging”; in CM terminology, it is named
“synchronization of workspaces” or “import of the changes”.
Conflicting changes are more likely to occur in files that are
accessed by several developers at the same time. Indeed, in the
MVP software some files are used to describe programming
language structures that are used all over the code. This means
that several different developers often change these files. In
this case, “back merges” are problematic because CM tools face
difficulties when they need to perform several merges at the
same time. To overcome this problem not avoiding parallel
development, MVP developers adopted a strategy to deal with
these files: they perform “partial check-in’s”, which consist of
checking-in some of the files back in the repository, even when
the developers have not finished all their changes yet. This
strategy reduces the number of “back merges” needed, therefore
overcoming the limitations of CM tools. In addition, they
minimize the likelihood of conflicting changes.

In addition to “partial check-in’s”, MVP developers adopt a
different practice during their private work: they “speed-up” to
finish some of their activities during the development process
to avoid merging. This does not happen all the time though, i t
occurs only when MVP developers are testing their changes.
This activity is performed right before the check-in operations.
As one developer plainly pointed out: “This is a race!”.
According to the software development process, this testing i s
necessary to guarantee that the changes will not introduce bugs
into the system. We observed that, this testing is very informal:
developers will sit on the V&V laboratory and compare the
current version of MVP with the one with changes. MVP
developers do not use more formal techniques, such as
regression testing techniques, at this moment. These will be
used by the V&V staff before creating a new release of the
software.

In contrast, the bug tracking tool does not provide support for
the private work of software developers. All the operations
made in the problem reports managed by this tool are publicly
accessible to all other software developers. For example, when a
developer is assigned a bug, he needs to fill some information
about the bug indicating how he will proceed to fix that bug.
MVP developers usually write the information to be added to
the bug tracking system outside the tool in a private file only
accessible by themselves. Eventually, this information is added
to the bug-tracking tool by the developer, which will
automatically make it available to all members of the MVP
team. Furthermore, the tool does not avoid that two developers
work on the same PR, as reported by one of the developers.
Developers themselves have to deal with this problematic
situation. The MVP group tries to avoid this problem through
the software development process, which prescribes that the
software manager is the one responsible for assigning PR to
developers. Any assignment needs the approval of the manager.
Organizational rules however interact with this process.
According to these rules, the software manager can not assign
work to the contractors working for the MVP group. This
assignment has to be done to the manager of the contracting
company, who will be responsible for assigning the work to the
developers.

5.2 Moving from Private to Public Work
In this section we discuss the work practices used by the MVP
team to support the transition from private to public work, as

well as how the software development tools used by the MVP
team support this transition. This transition might occur in two
situations: when a developer asks for code reviews, or informal
comments, in his code; or when a developer commits his work
(source-code changes) into the CM repository.

In the first case, MVP developers want to grant others access to
their code, meaning that the work will be visible to them so that
they can comment on it. In this case, MVP developers simply
need to change a setting in their CM workspaces. Although
their work is now public , it is not shared by the other
developers, meaning that it will not impact other developers
work.

In the second case, after a developer commits his work into the
CM repository, this work is made public and shared meaning
that it is visible and might impact the work of the other
developers. In order to publicize his work, the author of the
changes has to perform, at least, four different operations1:

1. Check-in the files that he wants to publish in his own
branch;

2. Check-out the same set of files from the baseline;
3 . Merge his changed files with the checked-out files

available in the baseline; and
4 . Check-in the new files generated by the merging

operation into the baseline.

From the technical point of view, these tasks are not difficult
since check-in’s, check-out’s and merges are typical operations
in CM systems and, therefore, supported by nearly every tool in
the market. This means that CM systems provide adequate
support for these operations. However, this support i s
problematic when a developer is, or was, engaged in parallel
development. As mentioned in the previous section, MVP
developers adopt “partial check-in’s” to deal only with files
with high levels of parallel development. Other files are not
“partially checked-in”. In this case, if a developer is engaged in
parallel development and other developers had checked-in the
same files in the baseline before him, then he will need to
perform “back merges” before merging his code into the
baseline. “Back merges” are supported by the CM tool through
the presentation of version trees of the files being merged,
which allows developers to identify the need for this task
through the observation of the versions on this tree. After that,
the operation is a simple merge. Again, the situation becomes
problematic only if several “back merges” need to be
performed.

During the transition from private to public, there is nothing
that other developers need, or are able to do to facilitate this
process. The work of performing the transition needs to be done
by the author of the changes that will be publicized. However,
because of the several inter-dependencies that exist among the
several parts of the software (e.g., source-code, manuals,
specifications, design documents, and so on), this does not
mean that these developers will not be affected by the
transition. Indeed, in order to minimize these effects, the
developer who is going to perform the transition follows a set
of formal and informal practices to facilitate the management of
the interdependencies. These practices need to be adopted

1 These operations might be different in other software

development teams since they depend on the branching
strategy adopted by the team.

because the tool support to the developers affected by the
private work being publicized is minimal. These formal and
informal practices are described below.

The Software Development Process

As mentioned before, the software development process
adopted by the MVP team prescribes the usage of code and
design reviews. One of the reasons reported by the MVP
developers for using these formal reviews is the possibility of
evaluating the impact that the changes under review will have
on the rest of the code. The most experienced software
developer of the team, for example, reported that design reviews
are used to guarantee that changes in the code do not “break the
architecture” of the MVP software. By breaking the architecture,
she means writing code that violates some of the design
decisions embedded in the MVP software. Code reviews, on the
other hand, are responsibility of process leaders, who can
evaluate the impact that the changes will introduce in their
processes before they were committed in the main repository.
This helps each and every process leader to coordinate the work
of other developers working in the same process.

E-mail Conventions

In addition to formal reviews, the MVP process prescribes that
after checking-in code in the repository, a developer needs to
send an e-mail about the new changes being introduced in the
system to the software developers’ mailing list (see section
3.2). However, we found out that MVP developers send this e-
mail before the check-in. Moreover, MVP developers add a brief
description of the impact that their work (changes) will have on
other’s work in this e-mail sent to the software developers’
mailing list. By adopting these practices, MVP developers
allow their colleagues to prepare for and reflect about the effect
of their changes. This is possible because all MVP developers
are aware of some of the interdependencies in the source-code,
but not all of them. As an example of this ‘preparation’,
developers might send e-mail to the author of the changes
asking him to delay their check-in, walk to the co-worker’s
office to ask about these changes or, if the changes have already
been committed, browse the CM and bug tracking systems to
understand them. The following list presents some comments
sent by MVP developers:

“No one should notice.”
“[description of the change]: only EDP users will
notice any change.”
 “Will be removing the following [x] files. No effect
on recompiling.”
“Also, if you recompile your views today you will
need to start your own [z] daemon to run with live
data.”
“The changes only affect [y] mode so you shouldn't
notice anything.”
“If you are planning on recompiling your view this
evening and running a MVP tool with live [z] data
you will need to run your own [z] daemon.”

These e-mails are also important because they tell (or remind)
developers that they have been engaged in parallel
development. Often, developers do not know that this i s
happening2. The information in the e-mail is usually enough to

2 Differently than the developers reported by Grinter [14],

before checking-out a file, they do not check the version tree

tell the developer if he needs to incorporate these changes right
away in order to continue his work, or if he can wait until he i s
ready for check-in. In both cases, the developer needs to “merge
back” the latest changes into his version of the file.

Sending e-mail before a check-in is also used by other
developers to support expertise identification, and as a
learning mechanism. Developers associate the author of the e-
mails describing the changes with the “process” where the
changes are being performed. In other words, MVP developers
assume that if one developer constantly and repeatedly
performs check-ins in a specific process, it is very likely that he
is an expert on that process. Therefore, if another developer
needs help with that process he will look for him for help:

“ [talking about a bug in a process that he is not
expert] (…) I don’t understand why this behaves the
way it does. But, most of these PR’s seem to have
John’s name on it. So you go around to see John. So,
by just by reading the headline of who does what, you
kind of get the feeling of who’s working on what
(…).So they [e-mails] tend to be helpful in that aspect
as well. If you’ve been around for ten years, you don’t
care, you already know that [who works with what],
but if you’ve been here for two years that stuff can
really make difference (…)”

On the other hand, the fact that developers read e-mails sent by
other developers to assess the impact of others’ changes in
their code contributes to their learning experience within MVP.
Note that developers who reported the aspects described in this
section had little experience working at MVP: the first with 2
years and the second with 2 _ months.

Problem Reports

The problem reports (PRs) of the bug-tracking tool are used by
different members of the MVP team who play diverse roles in
the software development process. Basically, when a bug i s
identified, it is associated with a specific PR. The tester who
identified the problem is also responsible for filling in the PR
the information about ‘how to repeat’ it. This description i s
then used by the developer assigned to fix the bug to learn and
repeat the circumstances (adaptation data, tools and their
parameters) under which the bug appears. In other words, the
information provided by the tester is then used by the MVP
developer to locate, and eventually fix the bug. After fixing the
bug, this developer must fill a field in the PR that describes
how the testing should be performed to properly validate the
fix. This field is called ‘how to test’. This information is used
by the test manager, who creates test matrices that will be later
used by the testers during the regression testing. The developer
who fixes the bug also indicates in another field of the PR if the
documentation of the tool needs to be updated. Then, the
documentation expert uses this information to find out if the
manuals need to be updated based on the changes the PR
introduced. Finally, another field in the PR conveys what needs
to be checked by the manager when closing it. Therefore, it is a
reminder to the software manager of the aspects that need to be
validated.

In other words, PR’s provide information that is useful for
different members of the MVP team according to the roles they

that displays information about other developers working on
the same file.

are playing. They facilitate the management of
interdependencies because they provide information to MVP
developers that help them in understanding how their work is
going to be impacted by the changes that are going to be
checked-in the repository.

Holding check-in’s

As mentioned earlier, MVP developers add a brief description
of the impact of their changes to the e-mail sent to the
developers before checking-in any code. Two types of impact
statements are used more often than others: changes in run-time
parameters of a process, and the need to recompile parts or the
whole source code. The former case is important because other
developers might be running the process that will be changed
with the check-in. The latter case is used because when a file i s
modified, it will be recompiled, as well as, the other files that
depend on it and this recompilation process is time-
consuming, up to 30 to 45 minutes. Developers are aware of the
delay that they might cause to others. Therefore, they hold
check-in’s until the evening to minimize the disturbance that
they will cause. According to one of the developers:

 “(…) people also know that if they are going to check-in a
file, they will do in the late afternoon … You’re gonna do a
check-in and this is gonna cause anybody who recompiles
that day have to watch their computer for 45 minutes (…)
and most of the time, you’re gonna see this coming at 2 or 3
in the afternoon, you don’t see folks (….) you don’t see
people doing [file 1] or [file 2] checking-in at 8 in the
morning, because everybody all day is gonna sit and
recompile.”

The transition from private work, then, is recognized as a point
at which the work of a single developer can impact the work of
others. Developers’ orientation is not simply towards the
artifacts but towards the work of the group. The subtlety with
which the transition is managed reflects this consideration.

5.3 Public Work
The work of one developer becomes public when it is visible to
all other co-workers. This happens in two different
circumstances: when a developer changes the settings of his
workspaces to grant others access to his code and after a
developer commits his changes into the repository of the CM
tool. These situations raise the question of how the MVP
developers handle the new public work (changes)?

In the former case, the work is public but not shared, which
means that it is not going to affect other developers’ work.
Therefore, MVP developers do not need to take any step in
order to handle the public work, because it will not affect them.
However, in the second case, MVP developers might need to
adapt their work based on these changes. Indeed, MVP
developers might need to recompile their changes (work) in
case they choose to incorporate the new public work or they
might need to change the run-time parameters of a process that
was altered by the changes. Based on our data, we found out
that the configuration management tool provides some help to
MVP developers handle this situation. As mentioned before,
these tools have building mechanisms that help MVP
developers, upon request, to incorporate the new changes and
identify syntactic conflicts between the developer’s ‘work-in-
progress’ and the new changes. However, these tools are not
able to detect semantic conflicts since they are purposely
created to be independent of programming languages [11].

The bug tracking tool, on the other hand, provides support for
public work because all the operations performed in the
problem reports are automatically visible to all MVP
developers. In addition, this tool implements some accounting
features that record the history of a PR including all operations
performed on each one of them.

5.4 Moving from Public to Private Work, or
“Breaking the code”
According to Walrad and Strom [33], the branch-by-purpose
strategy adopted by the MVP team (see section 3.3) assures
continual integration of the code, therefore minimizing
problems. However, this strategy needs to be complemented by
some form of notification that informs all developers that a
check-in happened (and therefore that some integration took
place). As mentioned before, this is achieved in the MVP team
through the e-mail notification sent before the check-in’s.
Therefore, whenever a new change is introduced in the
repository, all developers are notified about it. This affords an
easy detection of problems caused by the introduced changes.
In other words, if a change introduces a bug in the software,
other developers might be able to detect it because: (i) they are
aware that a change was introduced in the code by another
developer; and (ii) they usually integrate the new introduced
changes in their own work. If any abnormal behavior i s
identified in the software after a check-in, whoever identified
that will contact the author of the check-in to verify if the
problem is happening because of the check-in. If that is the
case, the software is called “broken” and the code that was
checked-in must be removed from the repository, corrected, and
checked-in again later. In other words, the publicly available
work needs to be made private again. The CM tool supports this
transition because it provides rollback facilities that allow one
to remove committed changes from the repository.

6. DISCUSSION
The notions of private and public work and workspaces are well
known ones in the design of collaborative systems. However,
our empirical observations draw attention to the complex set of
practices that surround the transition between public and
private. Private information has public consequences, and vice
versa.

The different formal and informal work practices arise in the
MVP team, especially, because of the interdependencies among
the different artifacts created during the software development
process. Indeed, these interdependencies make the process of
publicizing work so important. A developer can not simply
carelessly publicize his work, because this will cause a large
impact in other developers’ work: some of them will need to go
through their testing again, others will spend a lot of time
recompiling their changes, others can need to change their own
code in order to adapt the new checked-in code, and so on.

Since the MVP developers are aware of some of these
interdependencies, they explicitly work to minimize problems
that emerge in the relationship between their different working
needs. Artifacts such as problem reports facilitate the
management of interdependencies of developers from the
different groups and with different roles. Problem reports are
“boundary objects” in the sense of Star and Griesemer [29];
objects whose common identity is robust enough to support
coordination, but whose internal structure, meaning, and
consequences emerge from local negotiations between groups.

Viewing PR’s as boundary objects draws attention to their role
in managing loosely-coupled coordination, and how each
developer is able to interpret the information in the PR’s that i s
useful to their current work. Critically, this is achieved without
changing the identity of each PR along the whole software
development process. Indeed, each PR keeps the same unique
identifier.

Interestingly, these formal and informal work practices require
that the author of the changes performs most of the additional
work. However, this author will not get any benefit from that.
Indeed, sending e-mail notifications, holding check-in’s, and
filling the appropriate PR’s fields during the implementation
are all operations performed by the author of the changes and
none of them facilitate or improve his work. There is one
developer performing the extra-work who does not gain any
benefit of this extra work, and fifteen other developers who
benefit from his work3. That is exactly one of the situations
that lead groupware applications to fail [15]. In this particular
software development team though, this does not happen. MVP
developers are aware of the extra-work that they need to
perform, but they are also aware that this same extra-work i s
going to be performed by the other developers when necessary,
and this is going to help each and every one of them in
performing their tasks.

On the other hand, MVP developers also adopt informal
practices during their private work. The first one, called “partial
check-in’s”, is especially important because it is used to handle
files with a high degree of parallel development and changes in
these files positively correlate with the number of defects [23].
“Partial check-in’s” are variations of the formal software
development process, which establishes that check-ins only
will be performed when the entire work is done. They are
necessary because of the software development tools adopted
are unable to properly handle merging in these files. This is the
same reason, according to Grinter [14], that led other team of
software developers to either avoid parallel development or
rush to finish their work. On the other hand, MVP developers
rush because they do not want to repeat their testing when
another developer checks-in some code into the repository. In
both studies, developers describe their dilemma: they want to
produce high-quality code, but they also want to finish fast
their changes.

 Holding onto check-in’s is another informal approach adopted
by the MVP developers during their private work. It is adopted
because they are aware of some of the existing
interdependencies in the software and they want to minimize
the impact that their changes will cause on others’ work. To be
more specific, they understand that some changes cause a lot of
recompilation, which might lead other developers to spend
time “watching” the recompilation.

All this extra-work performed by the different members of the
MVP team is another form of articulation work [27] that occurs
in cooperative software development. It is different from the
recomposition work [13], which is the coordination required to
assemble software development artifacts from their parts.
Recomposition work focuses on choosing the right
components to create a software artifact due to source-code
dependencies, while this extra work that we report focuses on

3 The MVP group is composed of 16 developers. One of them is

performing the check-in; therefore 15 others are being helped
by the extra-work.

the management of all interdependencies that exist in a
software development effort.

After any code is checked-in into the CM repository, the other
MVP developers are able to detect problems, or, detect if the
MVP software is “broken”. As noted in other settings such as
ship bridges [19] or aircraft cockpits [20], this can be achieved
because work artifacts and activities are visible to all. By
creating a public space, the CM repository supports collective
error detection and correction.

7. IMPLICATIONS FOR TOOLS
Software engineers have been developing tools to help co-
workers in analyzing the impact of others’ work in their own
work. In this case, the support is provided to the developers
after the transition from private to public work has been made.
This approach, called change impact analysis [3], uses several
techniques. One example is dependency graph approaches,
which focus on determining the impact of the changed code
(product) in other’s part of the source code. These approaches
are usually based on program dependences, which are syntactic
relationships between the statements of a program representing
aspects of the program’s control flow and data flow [24]. In
other words, they focus only in determining the impact of the
changes in the product in the rest of the cooperative effort.
Although powerful, these techniques are also computationally
expensive and very time-consuming to be used by developers
in their daily work. Consequently, they do not completely
support the transition from private to public work, and as we’ve
seen, this is a very subtle step in cooperative software
development. Although these techniques have their
limitations, they are evidence that the dependencies between
developers' working activities are a cause for concern and
attention. We argue that other cooperative efforts, especially
those with several interdependencies, could greatly benefit
from such approaches, if they were arranged to support the
emergence of public information.

Recent approaches in software engineering attempt to provide
useful information to developers so that they can better
coordinate. In other words, these approaches try to increase the
awareness [7] of software engineers about the work of their
colleagues. They differ, however, on the type of information
that is provided. A first approach is based on the idea of
facilitating the dissemination of public information by
collocating software developers in warrooms [32]. In this case,
companies expect to achieve the same advantages that the
public availability of others’ actions has brought to other
settings such as ship bridges [19], aircraft cockpits [20],
transportation control rooms [17] and city dealing rooms [16].
Indeed, early results of this approach have been encouraging
[32]. However, there are practical limitations in the size of the
teams that can be collocated, which suggests that tool support
is still necessary. Indeed, new tools like Palantir [25] and Night
Watch [22] adopt a different approach that focuses on
constantly publicizing information(like CM commands)
collected from a CM workspace to other workspaces that are
accessing the same files. In this case, instead of focusing in the
transition between private and public aspects of work, these
tools basically eliminate the private work by making all
aspects of the work publicly available to others. However, as
discussed in section 2, the need for privacy and for controlling
the release of private information is an important aspect in any
social setting; which therefore needs to be addressed in the
design of cooperative tools.

Finally, our data suggests that a software developer might use
different sources of information at different times in order to
assess the current status of the work. As mentioned before, the
MVP team uses information from e-mail messages, the
configuration management tool and the bug tracking system.
By reading e-mail, MVP developers are aware of future changes
in the CM tool because somebody else is going to check-in
something. By inspecting only the CM tool, a developer can be
aware of partial check-ins in the repository that are not reported
by e-mail. And finally, the bug-tracking tool, through its PR’s,
provides information about how a developer’s work is going to
be impacted by the problem report associated with the check-in.
These are three different tools that a MVP developer has to use.
We believe that a possible improvement is to use event
mechanisms (such as event-notification servers) to integrate
these different sources of information, and then provide a
unique interface and tool to assess the relevant information.
Furthermore, abstraction techniques [18] could be employed to
generate high-level information (e.g., status of the work) from
low-level information like recent check-ins and check-outs, e-
mails exchanged among software developers, information
added to the bug-tracking tool, etc. This is an interesting
research area that we plan to explore.

8. CONCLUSIONS AND FUTURE WORK
This paper examined the transitions between private and public
work based on empirical material collected from a large-scale
software development effort. The team studied, called MVP,
uses mostly three tools to coordinate their work: a
configuration management (CM) tool, a bug-tracking system,
and e-mail. These tools provide support for private and public
work, as well as some technical support that facilitates the
transition from the former aspect to the latter. However, MVP
developers also adopted a set of formal and informal work
practices to manage this transition. These transitions are
necessary to facilitate the management of the interdependencies
among the different software artifacts. The following practices
were identified and described in the paper: partial check-in’s,
holding onto check-in’s, problems reports crossing team
boundaries, code and design reviews, “speeding-up” the
process, and finally, the convention of adding the description
of the impact of the changes in the e-mail sent to the group.
These practices suggest that analytical attention needs to be
given to these transitions in order to enhance our
understanding of cooperat ive work. Furthermore,
computational support also needs to be provided so that this
task can occur properly.

We plan to study other software development teams in order to
understand how they deal with the aforementioned transition
and their work practices to perform that. By doing that, we
expect to learn important characteristics that can help us in
understand other cooperative efforts.

9. ACKNOWLEDGMENTS
The authors thank CAPES (grant BEX 1312/99-5) and
NASA/Ames for the financial support. Effort sponsored by the
Defense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory, Air Force Materiel Command, USAF,
under agreement number F30602-00-2-0599. Funding also
provided by the National Science Foundation under grant
numbers CCR-0205724, 9624846, IIS-0133749 and IIS-
0205724. The U.S. Government is authorized to reproduce and

distribute reprints for governmental purposes notwithstanding
any copyright annotation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency (DARPA), the Air Force
Laboratory, or the U.S. Government.

10. REFERENCES
[1] Ackerman, M. S., "The Intellectual Challenge of CSCW:

The Gap Between Social Requirements and Technical
Feasibility," Human-Computer Interaction, vol. 15, pp.
179-204, 2000.

[2] Appleton, B., Berczuk, S., et al., "Streamed Lines:
Branching Patterns for Parallel Software Development,"
vol. 2002, 1998.

[3] Arnold, R. S. and Bohner, S. A., "Impact Analysis -
Towards a Framework for Comparison," International
Conference on Software Maintenance, pp. 292-301,
Montréal, Quebec, CA, 1993.

[4] Bowers, J., "The Work to Make the Network Work:
Studying CSCW in Action," Conference on Computer-
Supported Cooperative Work, pp. 287-298, Chapel Hill,
NC, USA, 1994.

[5] Conradi, R. and Westfechtel, B., "Version Models for
Software Configuration Management," ACM Computing
Surveys, vol. 30, pp. 232-282, 1998.

[6] Curtis, B., Krasner, H., et al., "A field study of the
software design process for large systems,"
Communications of the ACM, vol. 31, pp. 1268-1287,
1988.

[7] Dourish, P. and Bellotti, V., "Awareness and
Coordination in Shared Workspaces," Conference on
Computer-Supported Cooperative Work (CSCW '92), pp.
107-14, Toronto, Ontario, Canada, 1992.

[8] Dourish, P. and Bly, S., "Portholes: Supporting
Distributed Awareness in a Collaborative Work Group,"
ACM Conference on Human Factors in Computing
Systems (CHI '92), Monterey, CA, 1992.

[9] Ellis, C. A., Gibbs, S. J., et al., "Groupware: Some issues
and experiences," Communications of the ACM, vol. 34,
pp. 38-58, 1991.

[10] Erickson, T. and Kellogg, W. A., "Social Translucence: An
Approach to Designing Systems that Support Social
Processes," Transactions on HCI, vol. 7, pp. 59-83,
2000.

[11] Estublier, J., "Software Configuration Management: A
Roadmap," Future of Software Engineering, pp. 279-289,
Limerick, Ireland, 2001.

[12] Grinter, R., "Supporting Articulation Work Using
Configuration Management Systems," Computer
Supported Cooperative Work, vol. 5, pp. 447-465, 1996.

[13] Grinter, R. E., "Recomposition: Putting It All Back
Together Again," Conference on Computer Supported
Cooperative Work (CSCW'98), pp. 393-402, Seattle, WA,
USA, 1998.

[14] Grinter, R. E., "Using a Configuration Management Tool
to Coordinate Software Development," Conference on
Organizational Computing Systems, pp. 168-177,
Milpitas, CA, 1995.

[15] Grudin, J., "Why CSCW applications fail: Problems in
the design and evaluation of organizational interfaces,"
ACM Conference on Computer-Supported Cooperative
Work, pp. 85-93, Portland, Oregon, United States, 1988.

[16] Heath, C., Jirotka, M., et al., "Unpacking Collaboration:
the Interactional Organisation of Trading in a City
Dealing Room," Third European Conference on
Computer-Supported Cooperative Work, pp. 155-170,
Milan, Italy, 1993.

[17] Heath, C. and Luff, P., "Collaboration and Control: Crisis
Management and Multimedia Technology in London
Underground Control Rooms," Computer Supported
Cooperative Work, vol. 1, pp. 69-94, 1992.

[18] Hilbert, D. and Redmiles, D., "An Approach to Large-scale
Collection of Application Usage Data over the Internet,"
20th International Conference on Software Engineering
(ICSE '98), pp. 136-45, Kyoto, Japan, 1998.

[19] Hutchins, E., Cognition in the Wild. Cambridge, MA: The
MIT Press, 1995.

[20] Hutchins, E., "How a Cockpit Remembers its Speeds,"
Cognitive Science, vol. 19, pp. 265-288, 1995.

[21] Mark, G., Fuchs, L., et al., "Supporting Groupware
Conventions through Contextual Awareness," European
Conference on Computer-Supported Cooperative Work
(ECSCW '97), pp. 253-268, Lancaster, England, 1997.

[22] O'Reilly, C., Morrow, P., et al., "Improving Conflict
Detection in Optimistic Concurrency Control Models,"
11th International Workshop on Software Configuration
Management (SCM-11), Portland, Oregon, 2003 (to
appear).

[23] Perry, D. E., and, H. P. S., et al., "Parallel Changes in
Large-Scale Software Development: An Observational
Case Study," ACM Transactions on Software
Engineering and Methodology, vol. 10, pp. 308-337,
2001.

[24] Podgurski, A. and Clarke, L. A., "The Implications of
Program Dependencies for Software Testing, Debugging,
and Maintenance," Symposium on Software Testing,
Analysis, and Verification, pp. 168-178, 1989.

[25] Sarma, A., Noroozi, Z., et al., "Palantír: Raising Awareness
among Configuration Management Workspaces,"

Twenty-fifth International Conference on Software
Engineering, pp. 444-453, Portland, Oregon, 2003.

[26] Schmidt, K., "The critical role of workplace studies in
CSCW," in Workplace Studies : Recovering Work
Practice and Informing System Design, P. Luff, J.
Hindmarsh, and C. Heath, Eds.: Cambridge University
Press, 2000, pp. 141-149.

[27] Schmidt, K. and Bannon, L., "Taking CSCW Seriously:
Supporting Articulation Work," Journal of Computer
Supported Cooperative Work, vol. 1, pp. 7-40, 1992.

[28] Sellen, A. J. and Harper, R. H. R., The Myth of the
Paperless Office. Cambridge, Massachusetts: The Mit
Press, 2002.

[29] Star, S. L. and Griesemer, J. R., "Institutional Ecology,
Translations and Boundary Objects: Amateurs and
Professionals in Berkeley's Museum of Vertebrate
Zoology.," Social Studies of Science, vol. 19, pp. 387-
420, 1989.

[30] Stefik, M., Foster, G., et al., "Beyond the Chalkboard:
Computer Support for Collaboration and Problem
Solving in Meetings," Communications of the ACM, vol.
30, pp. 32-47, 1987.

[31] Strauss, A. and Corbin, J., Basics of Qualitative
Research: Techniques and Procedures for Developing
Grounded Theory, Second. ed. Thousand Oaks: SAGE
publications, 1998.

[32] Teasley, S., Covi, L., et al., "How Does Radical
Collocation Help a Team Succeed?," Conference on
Computer Supported Cooperative Work, pp. 339-346,
Philadelphia, PA, USA, 2000.

[33] Walrad, C. and Strom, D., "The Importance of Branching
Models in SCM," IEEE Computer, vol. 35, pp. 31-38,
2002.

[34] Whittaker, S. and Schwarz, H., "Meetings of the Board:
The Impact of Scheduling Medium on Long Term Group
Coordination in Software Development," Computer
Supported Cooperative Work, vol. 8, pp. 175-205, 1999.

