
An Approach to Usable Security Based on Event
Monitoring and Visualization

Paul Dourish and David Redmiles
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425

USA

{jpd,redmiles}@ics.uci.edu

ABSTRACT
The thorny problem of usability has been recognized in the
security community for many years, but has, so far, eluded
systematic solution. We characterize the problem as a gap
between theoretical and effective levels of security, and
consider the characteristics of the problem. The approach we
are taking focuses on visibility – how can we make relevant
features of the security context apparent to users, in order to
allow them to make informed decisions about their actions and
the potential implications of those actions?

Keywords: Usability, mental models, visualization, event
monitoring.

1. INTRODUCTION
Networked computer systems are increasingly the site of
people’s work and activity. So, for example, millions of
ordinary citizens conduct commercial transactions over the
Internet, or manage their finances and pay their bills online;
companies increasingly use the Internet to connect different
offices, or form virtual teams to tackle mission-critical
problems through entirely “virtual” interaction; and we see
increasing discussion of online voting systems for political
elections.

However, these new opportunities have costs associated with
them. Commercial, political and financial transactions involve
disclosing sensitive information. The media regularly carry
stories about hackers breaking into commercial servers, credit
card fraud and identity theft. Many people are nervous about
committing personal information to electronic information
infrastructures. Even though modern PCs are fast enough to
offer strong cryptographic guarantees and high levels of
security, these concerns remain.

Participation in activities such as electronic commerce
requires that people be able to trust the infrastructures that
will deliver these services to them. This is not quite the same
as saying that we need more secure infrastructures. We believe
that it is important to separate theoretical security (the level
of secure communication and computation that is technically

feasible) from effective security (the level of security that can
practically be achieved in everyday settings). Levels of
effective security are almost always lower than those of
theoretical security. There are many reasons for this disparity,
including poor implementations of key security algorithms
(Kelsey et al., 1998), insecure programming techniques
(Wagner et al., 2000; Shankar et al., 2001), insecure protocol
design (Kemmerer et al., 1994; Schneier and Mudge, 1998),
and inadequate operating systems support (Ames et al., 1983;
Bernaschi et al., 2000). One important cause of the disparity,
though, is the extent to which users can comprehend and make
effective use of security mechanisms.

2. CURRENT PROBLEMS
Although much effort has been devoted to the development of
algorithms and technologies for secure communication and
computation, much less time has been spent investigating how
to integrate these techniques into real-world use in meaningful
ways. In fact, it often seems that security and usability trade
off against each other – the complexity and overhead of
traditional security mechanisms are barriers to their effective
deployment. A few simple examples from our own experience
will illustrate:

• A research group designing a system for mobile code
needed a security solution. A highly qualified academic
security expert designed and implemented an elegant
scheme based on SPKI/SDSI in which the system servers
would determine transaction rights based on
cryptographically secure certificates exchanged over an
SSL RPC infrastructure. However, in actual use, this
resulted in a performance reduction of 5-10X. As a result,
in day-to-day use, everyone simply turned it off,
rendering the system less secure than it had been in the
first place.

• A research laboratory used S/Key one-time pads to allow
terminal access through a firewall host. Researchers would
periodically use private passwords and local client
programs to generate themselves new one-time password
pads. However, the system was soon discontinued when i t
became clear that people could not tell whether their
connections were secure enough to make it safe to
generate the new pads.

• Norton’s Anti-Virus software offers an option to check
incoming email for viruses before you download it to
your computer. The actual mechanism for doing this i s
not directly disclosed. When this option is turned on, the
user’s login and password are sent to a Norton server,
which downloads the user’s email and reads it, checking

for viruses, before sending it on to the user. Inserting
Norton’s own servers as an intermediary makes great
technical sense, allowing Norton to respond rapidly to
new virus attacks. However, users are typically shocked to
learn that their password and their email are being shared
with Norton; it damages their trust in the system and in
the software.

These brief examples are intended merely to be suggestive of
the range of difficulties that people encounter putting security
technology into practice, but they also express a number of
common themes. Three are particularly important here.

First, security in practice is not an all-or-nothing matter.
Rather, in practice, the question is not “is this system secure?”
but instead, “is it secure enough for my current tasks?” This i s
a quite different question. It suggests a continual tuning of the
degree of security required, and a process of matching security
to task. Too much security can be as much of a problem as too
little. Systems that inflexibly offer absolute security are likely
as useless as those that offer none (but generally more difficult
to configure and use).

Second, visibility of mechanism plays a critical role. If the key
problem is determining whether the current configuration of
systems and services is secure enough for the task at hand,
then it is critically important that security features and
potential threats be visible so that this determination can be
made. Hidden features of infrastructure, including mechanisms
designed for secure computation, are inherently unavailable
for this sort of examination.

Third, security in end-user applications is an end-to-end
phenomenon, even though it arises out of the interactions
between many different components (Saltzer et al., 1981;
Blumenthal and Clark, 2001). Effective security potentially
depends upon each application or infrastructure component
involved, as well as on the relationships between those
components. Although the end-to-end element is a known
issue in traditional security circles, it is particularly
problematic when we consider visibility and usability as
central issues for security infrastructures. When we talk of
“distributed applications” or “networked applications”, we
mean to include not simply the application, but the entire
“slice” through the infrastructure needed for that application
to work – client, server, network services, protocol
implementations, etc.

Our hypothesis is that a technical infrastructure which makes
visible the configuration, activity, and implications of
available security mechanisms will enable end users to make
informed choices about their behavior; and that these
informed choices, in turn, will yield more effective, more
secure system use. To test this hypothesis, we are developing a
“trustable” infrastructure that makes information and security
policy and configuration available to end users in ways that
are visible, usable, and integrated with their normal activities.

3. PREVIOUS APPROACHES
It is broadly recognized that one of the major challenges to the
effective deployment of information security systems i s
getting people to use them correctly. Psychological
acceptability is one of the design principles that Saltzer and
Schroeder (1975) identify. Even beyond the domain of
electronic information systems, there are many examples of the
fact that overly complex security systems actually reduce
effective security. For example, Kahn (1967), cited by

Anderson (1993), suggests that Russian military disasters of
the Second World War were partly due to the fact that Russian
soldiers abandoned the official army cipher systems because
they were too hard to use, and instead reverted to simpler
systems that proved easier to crack. Scheiner’s (2000:373)
sums up the situation: “Security measures that aren’t
understood by and agreed to by everyone don’t work.”

However, despite this broad understanding of the significant
relationship between security and usability, little work has
been carried out in this area to date. We discuss some
exceptions here.

3.1 Usability of Security Software and
Mechanisms
In a series of studies, researchers at University College,
London have explored some of the interactions between
usability and security (Adams, Sasse and Lunt, 1997; Adams
and Sasse, 1999). They focused on user-visible elements of
security systems, such as passwords. Although many
information systems professionals regard users as being
uninterested in the security of their systems (and, indeed,
likely to circumvent it by choosing poor passwords, etc),
Adams and Sasse’s investigations demonstrate that users are
certainly motivated to support the security of the system, but
often unable to determine the security implications of their
actions. The specific problems that they identify with
passwords have also led to interesting design alternatives
(Brostoff and Sasse, 2000; Dhamija and Perrig, 2000).

In some cases, the complexity of making security work is as
much a matter of interface design as anything else. Whitten
and Tygar (1999) present a usability analysis of PGP 5.0,
demonstrating the difficulties that users have in completing
experimental tasks (in their user study, only 3 out of 12 test
subjects successfully completed a standard set of tasks using
PGP to encrypt and decrypt email.) The problems that they
uncovered were largely problems of interface design, and in
particular the poor matching between user needs and the
structure of the encryption technology provided to meet these
needs.

Zurko and Simon (1996) explore similar concerns in their
focus on “user-centered security.” Like us, they are concerned
that the inscrutability of conventional security mechanisms
makes it less likely that users will employ them effectively.
The approach they outline focuses on graphical interfaces and
query mechanisms to MAP, an authorization engine. While
this approach is clearly helpful, it is limited to a particular area
of system security, and lacks the real-time feedback.

3.2 Control Over Security
One area at the intersection of usability and security that has
received some attention is the role of access control in
interactive and collaborative systems. For example, Dewan and
Shen (Shen and Dewan, 1992; Dewan and Shen, 1998) have
explored the use of access control and meta-access control
models as a basis for describing and controlling degrees of
information access and management in collaborative systems.
This is not simply a technical matter, since the structure and
behavior of these “internal” components can have a significant
effect on the forms of interactivity and collaboration they can
support (Greenberg and Marwood, 1994).

Many collaborative systems involve privacy issues and need
to provide users with control over the disclosure of

information. This has spurred a number of researchers to
explore the development of privacy control systems that are
tailored to the needs of end users. For instance, Dourish (1993)
describes the relationship between three different security
mechanisms for similar multimedia communication systems,
each of which reflects assumptions and requirements of the
different organizations in which they were developed. Bellotti
and Sellen (1993) draw on experiences with multimedia and
ubiquitous computing environments to identify the source of
a number of potential privacy and security problems. Their
primary concepts – disembodiment and dissociation – are
both visibility problems, related to the disconnection between
actors and actions that renders either actors invisible at the
site of action, or actions invisible to the actor.

Based on their investigations of privacy problems in online
transactions, Ackerman and colleagues propose the idea of
privacy critics, semi-autonomous agents that monitor online
action and can inform users about potential privacy threats
and available countermeasures (Ackerman et al., 1999;
Ackerman and Cranor, 1999). Again, this mechanism turns on
the ability to render invisible threats visible.

One important related topic is control over the degree of
security available. One of our criticisms of traditional security
systems has been their “all or nothing” approach. However,
there has been some work that attempts to characterize degrees
of security provision, as embodied by the idea of “quality of
security service.” (Irvine and Levin, 2001; Spyropoulou et al.,
2000). This builds on earlier work establishing a taxonomy of
security service levels (Irvine and Levin, 1999). The
fundamental insight is that organizations and applications
need to trade-off different factors against each other, including
security of various forms and degrees, in order to make
effective use of available resources (Thomsen and Denz, 1997;
Henning, 1999). While this work is directed towards resource
management rather than user control, it begins to unpack the
“security” black box and characaterize degrees and qualities of
security.

3.3 Visualizing Networked Systems
Although there has been a certain amount of research
investigating ways of visualizing distributed systems
structure, behavior and performance, most of this work has
been aimed at system managers and operators. Systems such as
Pulsar (Finkel, 1997) or Planet MBone (Munzer et al., 1996)
are designed to convey information to highly technical
audiences. One exception is in the System Health project
(Dourish et al., 2000), which monitored the activity of
complex distributed systems in order to convey some
understanding of the state of the system to end-users whose
work might be affected by outages, slowdowns, and other
mysterious “internal” events. However, this work was directed
towards fairly general characterizations of systems, rather than
focusing on an issue like security. In a more focused area, we
anticipate being able to apply heuristics, which can inform a
more specialized interpretation of events.

4. THE VISIBLE SECURITY APPROACH
Our Visible Security approach involves bringing together a
number of elements, including visualization technology,
system- and interface-monitoring components, and security-
specific heuristic evaluation components, to provide users
with a coherent, real-time picture of the state of the system and

their applications with respect to security needs. Figure 1
illustrates a layered architecture describing our approach.

The architecture is separated into four levels. At the top level
are security gauges – visualization widgets that present
dynamic visual representations of system state and activity.
The next layer is in two parts: security monitoring and event
monitoring . Together, they support the specification and
monitoring of security and privacy conditions. The
component for event monitoring is based on an existing
system for testing and tracking user interface and system
activity. The security monitoring component embodies a set of
security heuristics allowing it to translate these basic event
notifications into security-relevant interpretations. Like
intrusion detection systems (e.g. Denning, 1987; Lunt and
Jagannathan, 1988; Smaha, 1988), our monitoring agents
detect relevant conditions to be communicated to users; but
unlike intrusion detection systems, they integrate information
across multiple machines, incorporate application knowledge,
and assess the general degree of protection rather than looking
for specific problematic conditions.

The question arises, what events can be monitored? The next
layer of Figure 1 incorporates event notification servers as
serving as a source of events for the event monitoring layer.
The event monitoring layer can be adapted to various
notification servers. Finally, in the last layer, we show a set of
information sources. These include applications in use by the
end users and they may also include agents monitoring facets
of the end users’ work environments that are not directly
observable by monitoring events from a single application.

Event Monitoring Layer
(e.g., EDEM)

Security/Privacy
Visualization

Gauge 1

Security/Privacy
Visualization

Gauge 2

Security/Privacy
Visualization

Gauge 3

Security/Privacy
Visualization

Gauge n

Security Monitoring Layer

Standardized Notification Sever
(e.g., Cassius)

Information
Source 1

Information
Source 2

Information
Source 3

Information
Source n

Visualization
Layer

End User Applications
Layer

Monitoring
Layer

Event Server
Layer

Common Notification Sever 1
(e.g., Elvin, Siena)

Common Notification Sever n
(e.g., Elvin, Siena)

Figure 1: Architecture for the Visible Security Approach

So, our architecture is designed to gather, integrate, and
interpret information about security, which is distributed
across a large number of systems and components; and then, to
present this information as a set of real-time visual displays.
We now turn to a more detailed account of the research
problems to be solved.

4.1 Levels of Expression
One of the primary challenges in designing visual accounts of
system security is to achieve an appropriate level of
expression or description. Clearly, the visual presentations
provided must be expressive enough to be useful in making
security-relevant decisions. However, at the same time, it is not
our goal to provide people with large amounts of information,

nor do we intend to require all users to understand all the
relevant technical characteristics of security in their system.

A helpful analogy can be found in driving a car. Very few
competent drivers could provide a full and scientifically
accurate description of the operation of the internal
combustion engine (especially modern computer-controlled
engines, which would require a computational as well as a
mechanical account.) However, they are nonetheless able, in
the course of driving, to make use of information such as the
sound of the engine, the stiffness of the steering and the feel of
the clutch as they drive. Coupling these sounds to actions
does not require a full technical model, but relies on informal
understandings, practice, and experience. Similarly, our goal i s
to provide people with information – visual depictions of the
system’s action – which they can incorporate into their
assessments through practice and experience, but which do not
rely on complete technical descriptions of the system’s
operation.

An important element of our strategy, then, is not to attempt to
represent the users’ intent, nor their interpretation of current
threats. While user modeling approaches of this sort have
achieved some degree of success in online applications such
as web site personalization, we feel that the domain of user
actions in networked systems is insufficiently constrained to
apply this approach. Instead, our approach is to have the
system present information that it can validly “talk about” –
its own internal structure and action. The question to be
addressed, then, is in what terms this account should be
constructed.

4.2 Mental Models of Security
One sensible place to begin, at least for calibration, is with end
users own accounts of system action and system state. In
cognitive science, “mental models” refers to the conceptual
understandings that users hold of the domains in which they
operate. Actions are planned and interpreted with respect to
these models. These same models can be a valuable source for
design in this effort. Some existing work has begun to look
into operative models of system action. For instance, Sasse
and colleagues (Rimmer et al., 1999; Weirich and Sasse, 2001)
present some features of the mental models supporting end
users’ descriptions of the behavior of networked software
systems. Maglio and Matlock (1999) draw on contemporary
explorations of metaphor and cognition (Lakoff, 1992) to
uncover the metaphorical structure of reasoning and talking
about networked system use.

Our interest in models is two-fold. First, they help articulate a
level of description that makes sense, since it is close to the
level in which system action is currently understood. In this,
we want to identify a meaningful level of abstraction, rather
than the specific details of people’s understandings. Second,
these identify areas where the visualizations can be used
correctively. Just as in other areas, such as the oft-studied
domain of “naïve physics,” mental models can often be wrong
(diSessa, 1983.) One area where we hope that our
visualizations can help is not simply in helping people
understand what their system is doing, but also in developing
more accurate intuitions about the system’s behavior.

Building on the existing studies of these models, we are
currently investigating end users’ mental models of security
in information systems. Interestingly, our early results show
the importance of domains beyond the technical in
understanding security; accounts of the behavior of software

systems and the models of security and threat assessment
depend on social and organizational factors as much as
technical ones. Any adequate system response must similarly
integrate these elements. This investigation is ongoing.

5. CURRENT STATE
Parts of the architecture represented in Figure 1 have been
instantiated and others remain open for investigation. The
monitoring of information sources, distribution of interesting
events via event notification servers, the detection of event
patterns, and some rudimentary visualization have all been
achieved in a research scenario (de Souza et al., 2002). In this
previous work, components of a large distributed avionics
software system were instrumented with probes. The probes
reported events to an event notification server, CASSIUS
(Kantor and Redmiles, 2001). Various single-purpose
visualizations of the events were displayed in small windows
and were referred to as gauges. In this work, gauges provided
information primarily about the load of events on a system.
However, other gauges provided alarms to warn of adverse
sequences of events. This latter kind of gauge is one that
should directly support the detection of security or privacy
breaches.

The probe and gauge approach was expanded from the research
event notification server, CASSIUS, to work with two more
widely available event notification servers: Elvin (Fitzpatrick
et al., 1999) and Siena (Carzaniga et al., 2001). This expansion
was critical for at least two reasons. First, it was necessary to
verify the generality of the approach. Many kinds of event
notification servers exist in the world and most have their
merits with respect to a particular environment. It was
important to demonstrate that the probe and gauge approach
could function more robustly. Second, it is becoming evident
that a diverse distributed software workspace will have
applications linked to specific servers already. If the Visible
Security architecture outlined above is to work in the real
world, it will have to be built upon an architecture of diverse,
communicating servers. Thus, Figure 1 shows at least three
typical servers that might be involved in an implementation of
an adaptation of the probe and gauge approach for making
security and privacy events more visible.

The detection of specific events plays an important role in the
scenarios that the Visible Security approach should apply to.
There have been a large number of languages proposed for
monitoring and detecting specific event sequences. From our
previous work, we intend to adapt an approach called EDEM
for Expectation-Driven Event Monitoring (Hilbert and
Redmiles, 1998; Hilbert and Redmiles 2001). Expectations
play a key role in monitoring. Although it is useful to provide
general visualizations of events for end users’ awareness, these
can become ignored out of habit. It is critical to be able to
specify alarm conditions that perform more intrusive cues to
direct end users and others to problem situations. While other
researchers have focused on the theoretical expressiveness of
an event language (e.g. Luckham (1998) and Cohen and
colleagues (1997)), we acknowledge the need for a balance
between expressiveness and pragmatism. The specification of
events needs to useful but it must also be usable by end users.
In EDEM, leaving out more esoteric features made it possible
to have a much simpler specification of events of interest.
Although EDEM provides for creating a hierarchy of event
specifying different levels of abstraction, only the monitoring
of software program events has been specified. In the Visible

Security approach, heuristics encoding typical security or
privacy violations still need to be specified. Another area to be
explored further is that EDEM allowed probes to be specified
in a declarative fashion independent of an applications’
implementation. The range of applications that can be
automatically monitored versus those that require manual
instrumentation with probes needs to be explored further.

Continuous monitoring of the state of security and privacy
was emphasized earlier. In complex distributed software
environments that today’s end users work with, many kinds of
events and information affect them. There are events about
others work, such as the checking in and out of shared
documents, progress toward the completion of a process, and,
as noted here, events violating expectations about security
and privacy. In previous work, knowing information that
affected one’s work was termed awareness (Dourish and
Bellotti, 1992). The gauges approach is very compatible with
this concept of awareness (Kantor and Redmiles, 2001). One of
our long-term goals is to provide an environment of
ubiquitous awareness, integrating security and privacy issues
with other kinds of “awareness” information.

In a related investigation, we have also begun to explore the
notion of dynamically-coupled visualizations of system state
(Dourish and Byttner, 2002). Our initial work has concentrated
on the use of dynamic visualizations of Java programs as a
means to help novice programmers understand the dynamic
structure of the programs they develop. As a proof-of-concept,
though, this demonstrates the value of dynamic visualization
of system behavior, as well as providing a testbed for applying
the same techniques to different domains and different sets of
users. For example, this work is currently being extended to
visualization of network and file activity for end users of Java
programs, in support of the research outlined here.

6. CONCLUSION
Computer and communication security has been an important
research topic for decades. However, the pressing concern at
the moment is not simply with advancing the state of the art in
theoretical security, but with being able to incorporate
powerful security technology into the kinds of networked
computational environments that more and more people rely
on every day. We see the problem of creating a trustable
infrastructure – one that end users can see is visibly
trustworthy – as a major problem for both the security and the
HCI research communities.

We have described an approach that we are currently
developing. This work builds on earlier investigations, by
ourselves and others, into mental models of network
application behavior, dynamically-coupled visualizations of
system state, and event monitoring and distribution
infrastructures. Our early experiences with these, and with
investigations in progress into end users’ mental models of
system security, suggest that that this approach can provide an
effective mechanism to address effective, rather than
theoretical, security.

The novel paradigm we have been exploring is to
conceptualize security as a practical problem that end users
encounter and routinely solve in the course of their daily
activity. This turns our attention from security-as-it-can be to
security-as-it-is; and in making that shift, we also change the
problems to be addressed. We see the fundamental problems of
security as those surrounding the usability not of special-
purpose-security software, but of networked applicatios and

systems more generally. By addressing these problems as they
occur in the real world, our research aims to advance the
achievable levels of security in actual settings of use. We look
forward to presenting our future results.

7. REFERENCES
[1] Ackerman, M. and Cranor, L. 1999. Privacy Critics: UI

Components to Safeguard Users’ Privacy. Adjunct
Proceedings of CHI’99 (Short Papers), 258-259.

[2] Ackerman, M., Cranor, L., and Reagle, J. 1999. Privacy in
E-Commerce: Examining User Scenarios and Privacy
Preferences. ACM Conf. on Electronic Commerce, 1-8.
ACM.

[3] Adams, A. and Sasse, M.A. 1999. Users Are Not The
Enemy: Why users compromise security mechanisms and
how to take remedial measures. Comm. ACM, 42(12), 40-
46.

[4] Adams, A., Sasse, M.A., and Lunt, P. 1997. Making
Passwords Secure and Usable. In Thimbleby, H.
O’Connaill, B., and Thomas, P. (eds), People and
Computers XII: Proceedings of HCI’97, 1-19. Springer.

[5] Ames, S., Gasser, M., and Schell, R. 1983. Security Kernel
Design and Implementation: An Introduction. IEEE
Computer, 16, 7, 14-22.

[6] Anderson, R. 1993. Why Cryptosystems Fail. Proc. ACM
Conf. Computer and Communication Security CCS’93,
215-227. ACM.

[7] Bellotti, V. and Sellen, A. 1993. Design for Privacy in
Ubiquitous Computing Environments. Proc. European
Conf. Computer-Supported Cooperative Work
ECSCW’93, 77-92. Kluwer.

[8] Bernaschi, M., Gabrielli, E., and Mancini, L. 2000.
Operating System Enhancements to Prevent the Misuse of
System Calls. Proc. ACM Conf. Computer and
Communication Security, 174-183. New York: ACM.

[9] Blumenthal, M. and Clark, D. 2001. Rethinking the
Design of the Internet: the end-to-end arguments vs. the
brave new world. ACM Trans. Internet Technology, 1(1),
70-109.

[10] Brostoff, S. and Sasse, M.A. 2000. Are Passfaces more
usable than passwords? A field trial investigation. In S.
McDonald, Y. Waern & G. Cockton (Eds.): People and
Computers XIV - Usability or Else! Proceedings of HCI
2000, 405-424. Springer.

[11] Carzaniga, A., Rosenblum, D., and Wolf, A. 2001. Design
and Evaluation of a Wide-Area Notification Service. ACM
Trans. Computer Systems, 19(3), 332-383.

[12] Cohen, D., Feather, M., Narayanaswamy, K., Fickas, S.
1997. Automatic monitoring of software requirements.
Proceedings of the 1997 International Conference on
Software Engineering, ICSE 97 (Boston, MA), 602-603.

[13] Denning, D. 1987. An Intrusion-Detection Model. IEEE
Trans. Software Engineering, 13(2), 222-232.

[14] Dewan, P. and Shen, H. 1998. Flexible Meta Access-
Control for Collaborative Applications Primitives for
Building Flexibile Groupware Systems. Proceedings o f
ACM Conference on Computer-Supported Cooperative
Work CSCW'98, 247-256. ACM.

[15] Dhamija, R. and Perrig, A. 2000. Deja Vu: A User Study.
Using Images for Authentication. In Proceedings of the
9th USENIX Security Symposium, Denver, Colorado.

[16] Dourish, P. 1993. Culture and Control in a Media Space.
Proc. European Conf. Computer-Supported Cooperative
Work ECSCW’93, 125-137. Kluwer.

[1 7] Dourish, P. and Bellotti, V. 1992. Awareness and
Coordination in Shared Workspaces. Proc. ACM Conf.
Computer-Supported Cooperative Work CSCW'92, 107-
114. New York: ACM.

[18] Dourish, P., Swinehart, D., and Theimer, M. 2000. The
Doctor is In: Helping End-Users Understand the Health of
Distributed Systems. Proc. 11th IEEE/IFIP Workshop on
Distributed Systems Operation and Management DSOM
2000. IEEE.

[19] Dourish, P. and Byttner, J. 2002. A Visual Virtual Machine
for Java Programs: Exploration and Early Experiences.
Proc. ICDMS Workshop on Visual Computing (San
Francisco, CA.)

[2 0] Finkel, R. 1997. Pulsar: An Extensible Tool for
Monitoring Large UNIX Sites. Software Practice and
Experience, 27(10). 1163–1176.

[21] Fitzpatrick, G., T. Mansfield, et al. 1999. Augmenting the
workaday world with Elvin, Proceedings of 6th European
Conference on Computer Supported Cooperative Work
ECSCW'99, 431-450. Kluwer.

[22] Greenberg, S and Marwood, D. 1994. Real-Time Groupware
as a Distributed System: Concurrency Control and its
Effect on the Interface. Proc. ACM Conf. Computer-
Supported Cooperative Work CSCW’94, 207-218. ACM.

[23] Henning, R. 2000. Security Service Level Agreements:
Quantifiable Security for the Enterprise? Proc. New
Security Paradigm Workshop (Ontario, Canada), 54-60.
ACM.

[24] Hilbert, D. and Redmiles, D. 1998. An Approach to Large-
Scale Collection of Application Usage Data Over the
Internet, Proceedings of the Twentieth International
Conference on Software Engineering (ICSE ’98), Kyoto,
Japan), IEEE Computer Society Press, 136-145.

[25] Hilbert, D. and Redmiles, D. 2001. Large-Scale Collection
of Usage Data to Inform Design, Eighth IFIP TC 13
Conference on Human-Computer Interaction INTERACT
2001 (Tokyo, Japan), 569-576.

[26] Irvine, C. and Levin, T. 1999. Towards a Taxonomy and
Costing Method for Security Services. Proc. 15th Annual
Computer Security Applications Conference. IEEE.

[27] Irvine, C. and Levin, T. 2001. Quality of Security Service.
Proc. ACM New Security Paradigms Workshop, 91-99.

[28] Kahn, D. 1967. The Codebreakers. Macmillan.

[29] Kantor, M., Redmiles, D. 2001. Creating an Infrastructure
for Ubiquitous Awareness, Eighth IFIP TC 13 Conference
on Human-Computer Interaction INTERACT 2001 (Tokyo,
Japan), 431-438.

[30] Kelsey, J., Schneier, B., Wagner, D., and Hall, C. 1998.
Cryptanalytic Attacks on Pseudorandom Number
Generators. Proc. Intl. Workshop on Fast Software
Encryption, 168-188. Springer-Verlag.

[31] Kemmerer, R., Meadows, C., and Millen, J. 1994. Three
Systems for Cryptographic Protocol Analysis. Journal o f
Cryptology, 7(2), 79-130.

[32] Lakoff, G. 1992. The Contemporary Theory of Metaphor.
In Ortony (ed), Metaphor and Thought (2nd Edition).
Cambridge University Press.

[33] Lunt, T. and Jagannathan. 1988. A Prototype Real-Time
Intrusion-Detection Export System. Proc. IEEE
Symposium on Security and Privacy, 59-66. New York:
IEEE.

[34] Luckham, D. 1998. Rapide: a language and toolset for
causal event modeling of distributed system
architectures. Proc. Second International Conference
Proceedings Worldwide Computing and Its Applications
- WWCA'98 (Tsukuba, Japan), 88-96.

[3 5] Maglio, P. and Matlock, T. 1999. The Conceptual
Structure of Information Space. In Mundo, Benyon, and
Hook (eds), Social Nagivation of Information Space,
155-173. Springer.

[36] Munzer, T., Hoffman, E., Claffy, K., and Fenner, B. 1996.
Visualizing the Global Topology of the MBone. Proc. of
the Symposium on Information Visualization (San
Francisco, CA). New York: IEEE.

[37] Rimmer, J., Wakeman, I., Sheeran, L., and Sasse, M.A. 1999.
Examining Users’ Repertaoir of Internet Applications. In
Sasse and Johnson (eds), Human-Computer Interaction:
Proceedings of Interact’99.

[38] Saltzer, J. and Schroeder, M. 1975. The Protection of
Information in Computer Systems. Proceedings of the
IEEE, 63(9), 1278-1308.

[39] Saltzer, J., Reed, D., and Clark, D. 1981. End-to-End
Arguments in System Design. ACM Trans. Computer
Systems, 2(4), 277-288.

[40] Schneier, B. 2000. Secrets and Lies: Digital Security in a
Networked World. Wiley.

[4 1] Schneier, B. and Mudge. 1998. Cryptanalysis of
Microsoft's Point-to-Point Tunnelling Protocol (PPTP).
Proc. ACM Conf. Computer and Communication Security,
132-141. New York: ACM.

[42] di Sessa, A. 1983. Phenomenology and the Evolution of
Intuition. In Gentner and Stevens (eds), Mental Models.
Hillsdale, NJ: Laurence Erlbaum.

[4 3] Shen, H. and Dewan, P. 1992. Access Control for
Collaborative Environments. Proc. ACM Conf. Computer-
Supported Cooperative Work CSCW’92, 51-58. ACM.

[44] Smaha, S. 1988. Haystack: An Intrusion Detection System.
Proc. Aerospace Computer Security Applications
Conference, 37-44.

[45] de Souza, C., Basaveswara, S., Redmiles, D. 2002. Lessons
Learned Using with Notification Servers to Support
Application Awareness, Department of Information and
Computer Science, University of California, Irvine,
Technical Report #02-11.

[4 6] Spyropoulou, E., Levin, T., and Irvine, C. 2000.
Calculating Costs for Quality of Security Service. Proc.
16th Computer Security Applications Conference. IEEE.

[47] Thomsen, D. and Denz, M. 1997. Incremental Assurance
for Multilevel Applications. Proc. 13th Annual Computer
Security Applications Conference. IEEE.

[48] Wagner, D., Foster, J., Brewer, E., and Aiken, A. 2000. A
First Step Towards Automated Detection of Buffer
Overrun Vulnerabilities. Proc. Networked and Distributed
Systems Security Symposium. Internet Society.

[4 9] Weirich, D. and Sasse, M.A. 2001. Pretty Good
Persuasion: A first step towards effective password

security for the Real World. Proceedings of the New
Security Paradigms Workshop 2 0 0 1 (Sept. 10-13,
Cloudcroft, NM), 137-143. ACM Press.

[50] Whitten, A. and Tygar, J.D. 1999. Why Johnny Can’t
Encrypt: A Usability Evaluation of PGP 5.0. Proc. Ninth
USENIX Security Symposium.

[51] Zurko, M.E. and Simon, R. 1996. User-Centered Security.
Proc. New Security Paradigms Workshop. ACM.

