

the "security problem"

• what are the mathematical properties of this communication channel?

the "security problem"

- what are the mathematical properties of this communication channel?
- is it a good idea to press "send"?

security is a system feature

- · security issues arise at specific points
 - giving out credit card details
 - identifying myself
 - using passwords
- but... think about the *temporal* issues
 - electronic systems make ephemeral information permanent
 - accumulated information yields patterns
 - and patterns provide information that you never thought you'd disclosed

security and trust

- we think we understand trust
 - everyday phenomenon
 - based on personal contact and experience
- trust in the electronic domain?
 - what are the cues that engender trust for us?
 - who do you trust?
 - paul@dourish.com?
 - jpd013902@hotmail.com?

security and visibility

- a different challenge, then
 - how do you help people see the consequences of their actions?
 - how do you help them understand the context in which they are working?
 - how do you connect the context to the specifics of what people are doing?

manufacturing trust

- authentication
 - "I am who I say I am"
 - password systems
 - challenge/response
 - smart cards
 - biometrics

manufacturing trust

• authorisation

- "I can do this"
 capabilities
 - absolute capabilities
 - inference systems
 - delegation
 - revokable rights
 - physical access

manufacturing trust

accounting

- maintaining an audit trail
- the ability to reconstruct what's happened
- the ability to "roll back time"
- accurately logging and billing
 managing scarce resources

manufacturing trust

- privacy
 - privacy is more than not disclosing information
 - knowing what I disclose, when, to whom, and why
 these are the conditions on which I can make an
 - informed decision – what happens when the policy changes?
- two issues in privacy
- trusting the recipient
 - trusting the channel

• governments have little reason to collaborate – encryption is okay for us, but not for you

security and usability remember, this is about trust trust isn't a technical phenomenon trust is an outcome of someone's evaluation so, it needs to be comprehensible to the end party the inherent tension

- security involves putting up barriers
- usability involves tearing them down
- which barriers to use?
 example: email deletion

the usability of passwords

- an example of the tension
 - the system manager's view
 - passwords should be obscure and hard to guess
 - the user's view
 - passwords should be simple and easy to remember
 - common results...
 - people set the same password everywhere
 - passwords written on post-it notes

visualising system security

- security is an end-to-end phenomenon
 - modern networks are remarkably bad at handling end-to-end issues
 - when I connect to Amazon.COM, who is responsible for security?
 - when I login from home to read my email, where does security reside?
 - example S/Key and SecurID

the cost of security

- cost-benefit analysis
 - what does some level of security cost?
 - adds complexity to implementation
 - imposes restrictions on use
 - limits performance
 - what benefits result?
 - secure enough
 - example: Placeless Documents
 - SSL-based security model
 - Java 2 security model
 - the dangers of all or nothing!

summary

- security is an increasingly important issue
 - more work moved online
 increases risks
 - new domains for interaction with customers
 increases need for mechanisms of trust
- security is risk management

 supporting informed decision making
 - making consequences clear