
1

ICS 132: Organizational
Information Systems

Information Management and
Database Systems - II

SQL

• SQL is the Structured Query Language
– originally developed for IBM’s System/R in 1970s
– now an open standard (actually, a bunch of them)

• a common interface for relational DB’s
– manipulation

• creating tables, updating them, adding data

– examination
• looking data up: queries

SQL

• queries have three basic components
– select something

• what aspects of the data do we want to see

– from somewhere
• what tables contain it

– where condition
• filtering of results

• basic syntax
– select attribute1, attribute2,…
from relation1, relation2, …
where predicate

SQL

• some basic examples
– select title from books
– select title from books where
author=‘dourish’

– select title from books where
author=‘dourish’ and price < 35.00

– select grade from students where
id=‘12312312’

– select id,name from students where
grade=‘f’

SQL

• queries across multiple tables
– relational model splits data into different tables
– queries need to integrate across multiple tables
– selects that combine table are called joins

• example
– tables: “students” (id, name), “grades” (id, score)
– select name, grade
from students, grades
where students.id = grades.id

SQL

• joins aren’t as clever as you’d think
– a basic pairwise combination of possible elements

•select name,grade from
students,grades where grade=‘A’

2

SQL

• joins aren’t as clever as you’d think
– a basic pairwise combination of possible elements

•select name,grade from
students,grades where grade=‘A’

•select name,grade from
students,grades where grade=‘A’ and
students.id = grades.id

SQL

• joins aren’t as clever as you’d think
– a basic pairwise combination of possible elements

•select name,grade from
students,grades where grade=‘A’

•select name,grade from
students,grades where grade=‘A’ and
students.id = grades.id

– need to resolve ambiguous references
•select students.id,name,grade from
from students,grades where
grade=‘A’ and students.id=grades.id

SQL

• combining results
– union, intersect, except
– these are operators over selections

• examples
– select title from books where author =
‘dourish’ except select title from books
where title = ‘context-aware computing’

– select id from homework1 where score > 85
intersect select id from homework2 where
score > 85

– NB: neither of these are the easiest ways to do them…

SQL

• postprocessing (order, group)
– need to organise results
– order (sort), group (clustering)

• examples
– select id,name,score from students
order by score

– select id,name,score from students
order by score limit 10

– select model, price from products where
price < 100 order by price desc

– select manufacturer from price_list
group by manufacturer

SQL

• some functions over results
– e.g. avg(), sum(), count(), min(), max() …
– functions apply to single columns

• collapse multiple entries to a single value

• examples
– select count(*) from students where
grade=‘a’

– select avg(score) from grades

processing stages

join select operate arrange

3

SQL

• more complex processing
– where there are multiple fields, this is not enough
– need to specify two things

• the processing to perform (avg, sum, etc)
• how to group elements for processing

– why?

• example
– select author, avg(price) from books
group by author

SQL

• working with computed fields
– remember, computed values look like columns
– sometimes need to refer to outputs of operations
– “as” operator provides naming

• think of the output of any select as a temporary relation
• “as” creates the names of the attributes/columns

• example
– select author, avg(price) as average
from books group by author order by
average

SQL

• working with computed fields
– need a way to refer to the outputs of operations
– “as” operator provides naming

• think of the output of any select as a temporary relation
• “as” creates the names of the attributes/columns

• example
– select author, avg(price) as average
from books group by author order by
average

SQL

• summary
– selecting, combining, processing

• there’s more, of course…
– subqueries
– update and modification as well as querying

using SQL

• what SQL is not
– not a full programming language
– not a development environment

• sql queries normally embedded in programs
– e.g. from java, using JDBC
– languages differ in their degrees of integration

using SQL

Class.forName(JDBC_CLASS);
Connection conn = DriverManager.getConnection(DB_URL, "ics132", “password");
Statement statement = conn.createStatement();
ResultSet rs = statement.executeQuery(“select title,author from books”);
ResultSetMetaData md = rs.getMetaData();

out.println("<TABLE BORDER=2>");
out.println("<TR>");
for (int i = 1; i < md.getColumnCount() + 1; i++) {
 out.println("<TD>" + md.getColumnName(i).trim() + "</TD>");
}
out.println("<TR>");
while (rs.next()) {
 out.println("<TR>");
 for (int i = 1; i < md.getColumnCount() + 1; i++) {
 out.println("<TD>" + rs.getString(i) + "</TD>");
 }
 out.println("</TR>");
}
out.println("</TABLE>");

4

normalization

• again, relationship between defn and queries
– the structure of your database is intimately tied to

the queries you will perform against it
– sql has certain expectations

• column names and references
• how joins work

– database normalization
• ensure database meets a set of structural criteria
• enshrined as a set of “normal forms”

normalization

• there’s a whole set of normal forms…
• we’ll just look at three

– first normal form
• rule: no repeating groups

– second normal form
• rule: no non-key attribute depends on part of the key

– third normal form
• rule: no non-key attribute depends on another non-key

attribute

first normal form

• no repeating groups
– essentially, normalise the record length
– imagine you were trying to do a join on author:

UllmanSethiAho$72.00Compilers

LoflandLofland$31.95Analyzing Social
Settings

Dourish$30.00Where the
Action Is

Author3Author2Author1PriceTitle

first normal form

• no repeating groups
– essentially, normalise the record length
– imagine you were trying to do a join on author:

Sethi$72.00Compilers

Aho$72.00Compilers

Ullman$72.00Compilers

Lofland$31.95Analyzing Social
Settings

Dourish$30.00Where the
Action Is

AuthorPriceTitle

second normal form

• no non-key attributes depend on part of the key
– essentially, make key as small as it can be
– express only a single relationship per table

jpd@ics.uci.edu$30.00Where the Action IsDourish

baldi@ics.uci.edu$49.95BioinformaticsBaldi

EmailPriceTitleAuthor

second normal form

• no non-key attributes depend on part of the key
– essentially, make key as small as it can be
– express only a single relationship per table

jpd@ics.uci.edu$30.00Where the Action IsDourish

baldi@ics.uci.edu$49.95BioinformaticsBaldi

EmailPriceTitleAuthor

5

second normal form

• no non-key attributes depend on part of the key
– essentially, make key as small as it can be
– express only a single relationship per table

jpd@ics.uci.eduDourish

baldi@ics.uci.eduBaldi

EmailAuthor

$49.95InformaticsBaldi

$30.00Where the Action IsDourish

PriceTitleAuthor

third normal form

• no attributes depend on other non-key attributes
– again, a row should be about just one relationship

Lisa

Joey

Maria

Purchaser

1/1/03Hans$30.00Where the Action IsDourish

7/1/01Jaime$49.95BioinformaticsBaldi

1/1/02Amy$30.00Where the Action IsDourish

EmployedSellerPriceTitleAuthor

third normal form

• no attributes depend on other non-key attributes
– again, a row should be about just one relationship

Lisa

Joey

Maria

Purchaser

1/1/03Hans$30.00Where the Action IsDourish

7/1/01Jaime$49.95BioinformaticsBaldi

1/1/02Amy$30.00Where the Action IsDourish

EmployedSellerPriceTitleAuthor

third normal form

• no attributes depend on other non-key attributes
– again, a row should be about just one relationship

HansMariaWhere the Action Is

JaimeLisaBioinformatics

AmyJoeyWhere the Action Is

SellerPurchaserTitle

$49.95InformaticsBaldi

$30.00Where the Action IsDourish

PriceTitleAuthor

1/1/03Hans

7/1/01Jaime

1/1/02Amy

EmployedSeller

normalization

• normalization transforms database structure
– eliminates repetition
– disentangles dependencies
– clarifies relationships

• two benefits of these transformations
– semantic

• cleaner definitions
• clarifies “meaning”

– practical
• optimizes for SQL-based queries

next time

• an assignment on this stuff
– to be done online

• moving on from machine metaphor
– organisms

• performance and competition
• communication and interaction

