

- the basis of *monitoring* and *planning*
- the dependence is fundamental
 - modern organisational forms and practices are built around the idea that information is available
 remember the case of the filing cabinet

keys to information mgmt

- scale
 - dealing with information volume
- flexibility
 - need to deal with information in different ways
 - different questions you want to ask
 - different views from different people
- consistency
 - maintaining information quality and integrity
- note the role of the machine metaphor
 - standardization, repeatability, consistency...
 - not concerned with the data but with its form

organisational factors

- · centralisation and distribution
 - balancing control and autonomy
 - balancing individual and collective control
 - making information more visible
 - and making patterns of access... e.g. Delphion
- standardisation and classification
 - need to come to agreement about what info means
 - controlling the form is a very powerful position
 - examples from the ICD

data, database, DBMS

- data, database, DBMS
- DBMS: Data Base Management System
 - set of programs to define, update, control databases
 - this is what we often mean when we say "database"
 - Sybase, Oracle, DB2, MySQL, Postgres...
 - DBMS responsibilities
 - layout out information on the disk, building indexes, getting from one piece of data to another
 - your responsibilities
 - modeling the information
 - describing the relations
 - creating queries

database styles

DBMS store generic information
 – distinguishing characteristic is the basic data type

database styles • DBMS store generic information - distinguishing characteristic is the basic data type network - object-oriented - relational ICS 132 Joe ٨+ ECON 132 B-Bryan Ann ICS 132 B+ ECE 104 B Haimin

Sameer

PolSci

145

D

data modeling

- first step is to model the data
 - looking for generic structure
 - later, encode this as a database format
- modeling
 - modeling languages suit particular forms of encoding
- ER modeling
 - ER = entity-relationship
 - particularly suited to relational databases
 - based on the relational calculus
 - a systematic procedure for turning models into tables

ER modeling

- identifying entities and their relationships – not unlike OO modeling, but entirely static
- three (not two) elements
 - entities
 - basic objects of the domain
 - attributes
 - relevant features of those objects
 - relationships
 - (constrained) ways in which objects related to each other

the primary key

- identifying instances
 - database needs to be able to tell instances apart
 - all it has to go on is what's in the ER model

• the primary key

- one or more attributes that uniquely identify individual entities
 - what identifies people?
 - what identifies books?
 - what identifies houses?
 - what identifies cars?
 - what identifies bank accounts?

the primary key

- relationships also have primary keys
 - primary key of relationship is set of primary keys of the entity sets involved
 - might add descriptive attributes of relationship

ER modeling exercise

- draw an ER model for a car rental database
 identify cardinality
 - identify primary keys

turning models into tables

step 1

- for each entity in the ER model
 - $\ensuremath{\,\bullet\,}$ create a relation that includes all the atomic attributes
 - choose one or more attributes as the primary key

turning models into tables

step 2

- for each one-to-one relationship in the schema
 - identify the two entity sets S and T
 - choose one (say, S)
 - include the primary of T as an attribute of S
 - include the atomic attributes of the relationship as attributes of S

turning models into tables

step 3

- for each 1:N relationship
 - identify the relation S at the \N'' side of the relationship
 - include the primary key of T as an attribute of S
 - include the atomic attributes of the relationship as attributes of S

turning models into tables

• step 4

- for each two-way N1:N2 relationship
 - create a new relation S to represent this relationship
 - include primary keys of both relations in ${\sf S}$
 - include relationship's atomic attributes in S

turning models into tables

• step 5

- for each multi-valued attribute
 - create a table to represent this attribute
 - one column for a single value of the attribute
 - add the primary key of the entity (or relationship) of which it is an attribute

turning models into tables

• step 6

- finally, for each multi-way relationship
 create new relation S
 - include all the primary keys as attributes of S
 - include atomic attributes of relation as attributes of S

next time

- more databases
 - relational database normalization
 - SQL queries
- read the Bowker paper