still looking at databases

- so far
 - ER modeling
 - turning models into relational tables
 - normalizing relational tables
- the database chicken-and-egg problem
 - which comes first, structure or queries?
 - can’t query if you don’t have a structure
 - can’t design database if you don’t know the queries

SQL

- SQL is the Structured Query Language
 - originally developed for IBM’s System/R in 1970s
 - now an open standard (actually, a bunch of them)
- a common interface for relational DB’s
 - manipulation
 - creating tables, updating them, adding data
 - examination
 - looking data up: queries

queries have three basic components

- select something
 - what aspects of the data do we want to see
- from somewhere
 - what tables contain it
- where condition
 - filtering of results

basic syntax

- select attribute1, attribute2,...
 from relation1, relation2, ...
 where predicate

some basic examples

- select title from books
- select title from books where author='dourish'
- select title from books where author='dourish' and price < 35.00
- select grade from students where id='12312312'
- select id,name from students where grade='F'

queries across multiple tables

- relational model splits data into different tables
- queries need to integrate across multiple tables
- selects that combine table are called joins

example

- tables: "students" (id, name), "grades" (id, score)
 - select name, grade from students, grades where students.id = grades.id
SQL

- **joins aren’t as clever as you’d think**
 - a basic pairwise combination of possible elements
 - `select name, grade from students, grades where grade = 'A'`

- `select name, grade from students, grades where grade = 'A' and students.id = grades.id`

- **combining results**
 - union, intersect, except
 - these are operators over selections
 - examples
 - `select title from books where author = 'dourish' except select title from books where title = 'context-aware computing'`
 - `select id from homework1 where score > 85 intersect select id from homework2 where score > 85`
 - NB: neither of these are the easiest ways to do them...

- **postprocessing (order, group)**
 - need to organise results
 - order (sort), group (clustering)
 - examples
 - `select id, name, score from students order by score`
 - `select model, price from products where price < 100 order by price desc`
 - `select manufacturer from price_list group by manufacturer`

- **some processing over results**
 - e.g. `avg()`, `sum()`, `count()`, `min()`, `max()` ...
 - examples
 - `select count(*) from students where grade = 'a'`
 - `select avg(score) from grades`
• more complex processing
 – where there are multiple fields, this is not enough
 – need to specify two things
 • the processing to perform (avg, sum, etc)
 • how to group elements for processing

• example
 – select author, avg(price) from books
 group by author

• working with computed fields
 – need a way to refer to the outputs of operations
 – “as” operator provides naming
 • think of the output of any select as a temporary relation
 • “as” creates the names of the attributes/columns

• example
 – select author, avg(price) as average
 from books
 group by author
 order by average

• working with computed fields
 – need a way to refer to the outputs of operations
 – “as” operator provides naming
 • think of the output of any select as a temporary relation
 • “as” creates the names of the attributes/columns

• example
 – select author, avg(price) as average
 from books
 group by author
 order by average

• summary
 – selecting, combining, processing
 – there’s more, of course...
 • subqueries
 • update and modification as well as querying

• what SQL is not
 – not a full programming language
 – not a development environment
• sql queries normally embedded in programs
 – e.g. from java, using JDBC
 – languages differ in their degrees of integration
the organizational context

- okay, fine, so databases are important
 - understand technology to understand opportunities
- but, the 132 perspective
 - internal and external variety of organizations
 - co-evolution of technology and organizational practice
- an example
 - unified filing in The Department (a different one!)

summary

- key points:
 - modeling are about *making the world tractable*
 - amenable to encoding, summarisation, & prediction
 - relational databases
 - organise information according to relations & tables
 - sql provides uniform access
 - same two problems process representations
 - the detail of the representation
 - the object of the representation
 - need to see info use in organizational context
 - uses to which it is put
 - practices in which it is enmeshed