

administrivia

- midterm
 next Tuesday
 - sample paper on web site
 - remember, the syllabus has changed some

recap

- some observations
 - the variability in models of a domain
 - degree of specificity
 - attributes verses entities
 - relationship attributes
 - generally, we don't model the domain
 - model the *information needs* of some users
 - what you need to know determines what you represent
 this is inevitable
 - but hopefully, you buy yourself some future-proofing too if you do your job right

- domain of keys
- domain of values

relational databases

- tables and relations
 - a relational database involves multiple tables
 - why split them up?
 - avoid repetition
 - e.g. don't store delivery address separately for each order
 - inefficient
 can lead to inconsistency
 - putting them together again
 - need to correlate information
 - draw from many places
 - integrate across tables

turning models into tables

• step 1

- for each entity in the ER model
 - create a relation that includes all the atomic attributes
 - choose one or more attributes as the primary key

turning models into tables

• step 2

- for each one-to-one relationship in the schema
 - identify the two entity sets S and T
 - choose one (say, S)
 - include the primary of T as an attribute of S
 - include the atomic attributes of the relationship as attributes of S

turning models into tables

• step 3

- for each 1:N relationship
 - identify the relation S at the ``N'' side of the relationship
 - $\ensuremath{\,\bullet\,}$ include the primary key of T as an attribute of S
 - include the atomic attributes of the relationship as attributes of S

turning models into tables

• step 4

- for each two-way N1:N2 relationship
 - create a new relation S to represent this relationship
 - include primary keys of both relations in S
 - $\ensuremath{\,\bullet\,}$ include relationship's atomic attributes in S

turning models into tables

• step 5

for each multi-valued attribute

- create a table to represent this attribute
- one column for a single value of the attribute
- add the primary key of the entity (or relationship) of which it is an attribute

turning models into tables

step 6

- finally, for each multi-way relationship
 create new relation S
 - include all the primary keys as attributes of S
 - include atomic attributes of relation as attributes of S

turning models into tables

- representing entities

 tables that represent the attributes of each entity
 a primary key to uniquely identify each row
- representing relationships
 - an association of primary keys
 - inside one of the entity relations
 - as a separate relation

normalization

- again, relationship between defn and queries

 the structure of your database is intimately tied to
 the queries you will perform against it
 - query languages have different constraints
 - so, need to ensure that database design matches the needs of the query language
 - we'll be using SQL
 - based on the relational calculusdesigned alongside relational model
 - designed alongside relation
 - database normalization
 - ensure database meets a set of structural criteria
 - enshrined as a set of "normal forms"

normalization

- there's a whole set of normal forms...
- we'll just look at three
 - first normal form
 - rule: no repeating groups
 - second normal form
 - rule: no non-key attribute depends on *part* of the key third normal form
 - rule: no non-key attribute depends on another non-key attribute

first normal form

- no repeating groups
 - essentially, normalise the record length

Title	Price	Author1	Author2	Author3
Where the Action Is	\$30.00	Dourish		
Analyzing Social Settings	\$31.95	Lofland	Lofland	
Compilers	\$72.00	Aho	Sethi	Uliman

first normal form

• no repeating groups

- essentially, normalise the record length

Title	Price	Author
Where the Action Is	\$30.00	Dourish
Analyzing Social Settings	\$31.95	Lofland
Compilers	\$72.00	Aho
Compilers	\$72.00	Sethi
Compilers	\$72.00	Ullman

second normal form

no non-key attributes depend on *part* of the key

 essentially, make key as small as it can be

Author	Title	Price	Email
Dourish	Where the Action Is	\$30.00	jpd@ics.uci.edu
Baldi	Bioinformatics	\$49.95	baldi@ics.uci.edu

second normal form						
• no _	non-ke essential	y at ly, m	tributes o ake key as	lepe s sma	end on <i>pa</i> all as it can	<i>rt</i> of the key be
	Author		Email			
	Dourish		jpd@ics.uci.edu			
	Baldi		baldi@ics.uci.edu			
					1	
		Auth	or	Title		Price
	Dour		sh	When	e the Action Is	\$30.00
	Baldi		Infor		matics	\$49.95

third normal form

• no attributes depend on other *non*-key attributes – essentially, a relation should be about just one thing

Author	Title	Price	Purchaser	Seller	Employed
Dourish	Where the Action Is	\$30.00	Maria	Hans	1/1/03
Dourish	Where the Action Is	\$30.00	Joey	Amy	1/1/02
Baldi	Bioinformatics	\$49.95	Lisa	Jaime	7/1/01

hird no	rmal	forn	n			
• no attrib – essent	outes dep ially, a rela	end of ation sh	n othe Iould b	er <i>non</i> -k e about j	ey attributes	
Title	Purchaser	Seller		Seller	Employed	
Where the Action Is	Maria	Hans		Hans	1/1/03	
Where the Action Is	Joey	Amy		Amy	1/1/02	
Bioinformatics	ioinformatics Lisa			Jaime	7/1/01	
	Author		Title	-	Price	
	Dourish		Where the Action Is		\$30.00	

normalization

- normalization transforms database structure
 - eliminates repetition
 - disentangles dependencies
 - clarifies relationships
- two benefits of these transformations
 - semantic
 - cleaner definitions
 - clarifies "meaning"
 - practical
 - optimizes for SQL-based queries

next time

• next time, SQL syntax and queries