ICS 132: Organizational Information Systems

Information Management and Database Systems

administrivia

- homework
- lectures on data management
- midterm

information management

- organisations depend on information
 - about their own processes
 - about what’s going on around them
 - the basis of monitoring and planning
- the dependence is fundamental
 - modern organisational forms and practices are built around the idea that information is available
 - remember the case of the filing cabinet

keys to information mgmt

- **scale**
 - dealing with information volume
- **flexibility**
 - need to deal with information in different ways
 - different questions you want to ask
 - different views from different people
- **consistency**
 - maintaining information quality and integrity

organisational factors

- centralisation and distribution
 - balancing control and autonomy
 - balancing individual and collective control
 - making information more visible
 - and making patterns of access... e.g. Delphion
- standardisation and classification
 - need to come to agreement about what info means
 - examples from the ICD

data, database, DBMS

- **data**
 - a big pile of bits
- **a database**
 - structured collection of data
 - organised according to predefined relations
 - paper documents?
 - contact list on my Pilot?
 - world wide web?
- **why bother with a database?**
 - need to maintain consistency
 - don’t want to have to repeat information
data, database, DBMS

- DBMS: Data Base Management System
 - set of programs to define, update, control databases
 - this is what we often mean when we say "database"
 - Sybase, Oracle, DB2, MySQL, Postgres...
 - DBMS responsibilities
 - layout out information on the disk, building indexes, getting from one piece of data to another
 - your responsibilities
 - modeling the information
 - describing the relations
 - creating queries

database styles

- DBMS store generic information
 - distinguishing characteristic is the basic data type
 - network
 - object-oriented

database styles

- DBMS store generic information
 - distinguishing characteristic is the basic data type
 - network
 - object-oriented

database styles

- DBMS store generic information
 - distinguishing characteristic is the basic data type
 - network
 - object-oriented
 - relational

database styles

- DBMS store generic information
 - distinguishing characteristic is the basic data type
 - network
 - object-oriented
 - relational

database styles

- DBMS store generic information
 - distinguishing characteristic is the basic data type
 - network
 - object-oriented

data modeling

- first step is to model the data
 - looking for generic structure
 - later, encode this as a database format
- modeling
 - modeling languages suit particular forms of encoding
 - ER modeling
 - ER = entity-relationship
 - particularly suited to relational databases
 - based on the relational calculus
 - a systematic procedure for turning models into tables
ER modeling

- identifying entities and their relationships
 - not unlike OO modeling, but entirely static
- three (not two) elements
 - entities
 - basic objects of the domain
 - attributes
 - relevant features of those objects
 - relationships
 - (constrained) ways in which objects related to each other

ER modeling

- entities & entity sets
 - entities occur in sets
 - broadly, entity sets in ER are like classes in Java
 - the describe a class of data
 - concrete: person, book, computer
 - abstract: account, concept, holiday
 - entities are like instances
 - the important thing about entities is that they can be distinguished from one another
 - defining entities defines what you can know
 - definitions suited to different purposes
 - e.g. different ways of describing books
 - for a library, a publisher, or a bookstore

ER modeling

- attributes
 - attributes are properties of an entity
 - attributes have values
 - normally, single-valued ("atomic")
 - e.g. a person has just one SSN
 - sometimes, multi-valued
 - e.g. a person may have more than one phone number

ER modeling

- relationships define relations between entities
 - relationship sets link entity sets
 - essentially, a typology of relations, e.g.
 - from employee to office
 - from course to instructor
 - from course to student
 - relationships can have attributes
 - attributes not of one entity or other, but the relationship between them
 - e.g. last-accessed
 - for bank accounts and account holders

ER modeling

- relationships have cardinality (number)
 - one-to-one
 - one-to-many
 - optional one-to-many
 - many-to-many
ER modeling: example

the primary key

- identifying instances
 - database needs to be able to tell instances apart
 - all it has to go on is what’s in the ER model
- the primary key
 - one or more attributes that uniquely identify individual entities
 - what identifies people?
 - what identifies books?
 - what identifies houses?
 - what identifies cars?
 - what identifies bank accounts?

ER modeling exercise

- draw an ER model for a car rental database
 - identify cardinality
 - identify primary keys

the primary key

- relationships also have primary keys
 - primary key of relationship is set of primary keys of the entity sets involved
 - might add descriptive attributes of relationship

ER modeling

- the simplicity of ER is useful
 - ER is a communication tool – esp. with the participants in a process/setting
- you’re dealing with types, not objects
 - not really entities, but entity sets
- relationship vs attribute?
 - depends on what you want to know
 - structure of data depends on the questions you’ll want to ask of it