ICS 132: Organizational Information Systems

Planning, Building and Maintenance

where are we?

- project
 - due next Monday...
- meantime...
 - continuing with topics from Alter
 - today: planning, building and maintenance
 - previously encountered in ICS 52, 121...
 - this is meant to supplement, not replace, that material

why look at these?

- the traditional technical view:
 - we’re system developers. we write code. we don’t need to worry about these management issues.
- the unfortunate reality:
 - most system failures are project management failures
 - the cost of correcting errors increases as the project proceeds
- so the 132 view:
 - IS development encompasses the whole lifecycle
 - from planning to retirement

four roles for planning

- determining feasibility
 - is it even possible to do this?
 - let’s see step by step how we’ll get there
- determining costs
 - breaking down costs
 - estimating benefits
- predicting resource needs
 - what else will have to be in place, and when?
- getting political buy-in
 - often the most important....
 - software architects and Powerpoint....

planning: challenges

- difficulty foreseeing and assessing opportunities
 - hindsight is 20-20
 - organisations and technologies co-evolve
 - systems afford new organisational opportunities
 - organisations adapt to capitalise upon systems
 - people find new uses for technology
 - e.g. information systems may indirectly communicate information
 - Apple’s meeting reservation system

planning: challenges

- difficulty assuring consistency with organisational plans and objectives
 - no single point of view
 - unexpected conflicts
 - distributed effort
 - individual benefit versus overall benefit
planning: challenges

• difficulty building large systems
 – long-term development efforts
 • changing circumstances
 • problems of consistency
 – distributed effort
 • coordinating all the players
 • getting agreement
 – project failure is a huge problem
 • both common and costly
 • once you have a plan, sticking to it is hard
 • when your plan starts to fail, recovery is even harder

• difficulty maintaining information systems performance
 – as usual, performance can have many meanings
 • throughput, efficiency, quality, costs, reliability...
 – two challenges
 • delivering performance
 • maintaining performance
 – the environment is continually changing
 – the organisation is continually changing
 – new approaches can yield short-term benefit
 • many factors (as shown by WCA)

planning: challenges

• difficulty collaborating with system builders
 – one of the reasons for 132!
 • creating more informed project managers
 • creating more informed system builders
 – different models of performance
 • business performance
 • system performance
 – system can perform well but business goals fail
 – business goals can succeed without system optimisation
 » ensuring that your effort is worthwhile

planning: principles

• support the firm’s business strategy with appropriate technical architecture, standard and policies
 – this is more than “do it right”
 – focus on business strategy
 • you need to be able to articulate this!
 – the importance of scale
 • but... watch out for issues of maintenance and evolution

planning: principles

• evaluate technology as a component of a larger system
 – the best technology does no good without an infrastructure to make it work
 – don’t ask what can this technology do?, but rather, what kind of use are we in a position to make of it?

planning: principles

• recognise life cycle costs, not just acquisition costs
 – “Total Cost of Ownership”
 • support, administration, training, running costs, consumables, ...
 • infrastructure (and it’s own knock-on costs)
planning: principles
• design information systems to be maintainable
 – supporting monitoring, control, evolution
 – making it possible to find out what’s going on!
 – “IS maintenance” might actually be a response to changes in the organisation or the work itself

planning: principles
• recognise the human side of technology use
 – human issues
 • training
 • growth
 • motivation
 – all those good “Human Relations” school ideas...
 – this is not just a question of design, but a question of engagement
 • ethnographic techniques
 • the Scandinavian “Participatory Design” movement

planning: principles
• support and control the technical side
 – 132 may emphasize human issues, but the technology doesn’t look after itself...
 – continual monitoring
 – functional maintenance
 • making sure hardware is reliable
 – preventative maintenance
 • software
 • data
 – who’s responsible?

cost-benefit analysis
• evaluating specific plans
• comparing alternatives
• do the benefits outweigh the costs?
 – seems obvious, but not always
 – measurement may not be straightforward
 – remember the time value of money
 • unused monies don’t just sit around collecting dust
 – and don’t forget the cost of CBA!

cost-benefit analysis
• costs and benefits stated objectively
 – but of course, they’re not! issues of perspective
 • statement of purpose
 – decision-making? background information?
 • time period
 – before the fact? monitoring an ongoing project?
 • scope
 – considering radical alternatives?
 • criteria

cost-benefit analysis
• costs
 – resources required to procure a solution
 • not always financial, but expressed financially
 – equipment
 – wages for work
 – rent for space
cost-benefit analysis

- benefits
 - cost savings
 - inc. better utilization of assets, reduced inventories...
 - cost avoidance
 - improved performance
 - "intangibles"
 - e.g. better information

- some problems
 - how much time to spend identifying alternatives?
 - cost accounting problems
 - double counting, omitting costs, hidden costs, spillovers
 - quantifying benefits
 - intangibles
 - e.g. morale, improved decision-making
 - underestimating cost, overestimating benefit
 - temporal effects too...

development models

- traditional system development
 - this is the conventional approach CS discusses
 - e.g. the SE model at the heart of ICS 52, 121
- prototyping
 - an iterative model
 - quickly build a mock-up or basic functional system
 - put it into limited use, see what works and doesn’t
 - preparatory to full system development, or standalone
 - various things to learn:
 - what’s easy or hard technically
 - what’s easy or hard organisationally
 - only as good as your ability to evaluate it

- application
 - better to buy than to build
 - formal relationships for quality, support, maintenance
 - customisation generally needed
 - but not always possible...
- end-user development
 - a Holy Grail of interactive system development
 - example: spreadsheets
 - EUD is normally a response to individual problems
 - not a strategic organisational approach
 - but, may favour distributing the ability to solve problems

the blame lifecycle

- idiot managers
- idiot users
- lousy vendors and their damnable lies
- government
- capitalist avarice
 - lack of the right tools
 - lack of the right methods
 - lack of sufficient willpower
the blame lifecycle

Initiation
Identifying needs; general description of problems

Development
Transform requirements into artifacts; create documentation

Implementation
Make system operational; train, covert, consult

Operation/Maintenance
Ongoing use; bug fixes; enhancements

progress

summary

- This class talks about technology in context
 - In general, organisational context
 - Today, temporal context
 - What comes before... planning
 - What comes after... maintenance
- Planning isn't just deciding what to do
 - Evaluating options & managing resources
 - You will be called on these!
- Maintenance is the major part of use
 - Meeting changing needs
 - Accommodating new opportunities

next time

- Security
- Read Alter ch 13

maintenance

- Most of a project lifetime is maintenance
 - If it takes longer to build than to use, you're doing something wrong...
- Varieties of maintenance
 - Regular maintenance
 - Accommodating changing needs
 - Accommodating changing technologies
- Designing for maintenance
 - Modularity
 - Scalability
 - Flexibility