information management

- organisations depend on information
 - about their own processes
 - about what’s going on around them
 - the basis of monitoring and planning
- the real world is too hard to keep track of
 - information abstracts and summarises it
 - brings the world into alignment with some model
 - denominate the work and treat the results like equations
 - equations represent the work
 - working with the equations tells you whether and how you need to address the work!

the factors at work

- Data: more is better
 - More data means more confusion
 - More confusion means simplifying use requirements
 - Need more resources

- Complexity
 - flat files
 - hierarchical database
 - network database
 - relational database

data, database, DBMS

- data
 - a big pile of bits
- a database
 - structured collection of data
 - organised according to predefined relations
 - paper documents?
 - contact list on my Pilot?
 - world wide web?
- why bother with a database?
 - need to maintain consistency
 - don’t want to have to repeat information

data, database, DBMS

- DBMS: Data Base Management System
 - set of programs to define, update, control databases
 - this is what we often mean when we say "database"
 - Sybase, Oracle, DB2, MySQL, Postgres…
- DBMS responsibilities
 - layout out information on the disk, building indexes, getting from one piece of data to another
- your responsibilities
 - modeling the information
 - describing the relations
 - creating queries

ER modeling

- identifying entities and the relationships between them
 - not unlike OO modelling, but entirely static
- types of relationships
 - one to one
 - one to many
 - optional one to many
 - many to many
ER modeling

• things to remember
 – the simplicity of ER is useful
 – ER is a communication tool – esp. with the participants
 – you’re dealing with generic entities, not specific

the relational model

• most common (but not the only one)
• database is a set of tables
 – each table expresses a relation between data items
 – each row of the table is a record
 – each column is an attribute
• not just any table will do
 – for instance, we need a key field
 • a field (or set of fields) that uniquely identifies every record
 – other properties are enforced by normalization
 • iteratively refining the database format for efficiency

first normal form

• no repeating groups
 – essentially, normalise the record length

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where the Action Is</td>
<td></td>
<td>$30.00</td>
</tr>
<tr>
<td>Analyzing Social Settings</td>
<td></td>
<td>$31.95</td>
</tr>
<tr>
<td>Compilers</td>
<td></td>
<td>$72.00</td>
</tr>
</tbody>
</table>

second normal form

• no non-key attributes depend on part of the key
 – essentially, break the data into many tables

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Price</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dourish</td>
<td>Where the Action Is</td>
<td>$30.00</td>
<td>jpd@ics.uci.edu</td>
</tr>
<tr>
<td>Baldi</td>
<td>Bioinformatics</td>
<td>$49.95</td>
<td>baldi@ics.uci.edu</td>
</tr>
</tbody>
</table>
second normal form

- no non-key attributes depend on part of the key
 - essentially, break the data into many tables

<table>
<thead>
<tr>
<th>Author</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dourish</td>
<td>jpd@ics.uci.edu</td>
</tr>
<tr>
<td>Baldi</td>
<td>baldi@ics.uci.edu</td>
</tr>
</tbody>
</table>

third normal form

- no attributes depend on other non-key attributes
 - again, break the data into many tables

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Price</th>
<th>Purchaser</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dourish</td>
<td>Where the Action Is</td>
<td>$30.00</td>
<td>Maria</td>
<td>12/21/00</td>
</tr>
<tr>
<td>Dourish</td>
<td>Where the Action Is</td>
<td>$30.00</td>
<td>Joe</td>
<td>1/1/01</td>
</tr>
<tr>
<td>Baldi</td>
<td>Bioinformatics</td>
<td>$49.95</td>
<td>Lisa</td>
<td>1/2/01</td>
</tr>
</tbody>
</table>

third normal form

- no attributes depend on other non-key attributes
 - again, break the data into many tables

<table>
<thead>
<tr>
<th>Title</th>
<th>Purchaser</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where the Action Is</td>
<td>Maria</td>
<td>12/21/00</td>
</tr>
<tr>
<td>Where the Action Is</td>
<td>Joe</td>
<td>1/1/01</td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>Lisa</td>
<td>1/2/01</td>
</tr>
</tbody>
</table>

normalisation

- what’s the point?
 - eliminate redundancy
 - eliminate opportunities for inconsistency

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Price</th>
<th>Purchaser</th>
<th>StudentID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dourish</td>
<td>Where the Action Is</td>
<td>$30.00</td>
<td>Maria</td>
<td>12/21/00</td>
</tr>
<tr>
<td>Dourish</td>
<td>Where the Action Is</td>
<td>$25.00</td>
<td>Joe</td>
<td>1/1/01</td>
</tr>
<tr>
<td>Baldi</td>
<td>Bioinformatics</td>
<td>$49.95</td>
<td>Lisa</td>
<td>1/2/01</td>
</tr>
</tbody>
</table>

the transaction model

- normalisation spreads data across multiple tables
 - single action requires many updates
 - a new customer placing a new order?
 - consistency is important
 - transactions group operations into logical units
the ACID properties

• Atomicity
• Consistency
• Independence
• Durability

getting it out again

• query languages
 – SQL is most common
 • "SELECT name,id FROM grades WHERE grade='A';"

3-tier architecture

distributing databases

• managing information access needs
 – locality
 – performance

• three forms of distribution
 – distributing tables
 – distributing rows
 – replication

• two-phase commit
 – "can commit?"
 – "do commit!"

• query languages
 – SQL is most common
 • "SELECT name,id FROM grades WHERE grade='A';"
alternatives to relational

- object-oriented
 - hierarchical schemas
 - migrate code closer to data
- text databases
 - free-form indexing
 - less structure
 - but more useful for unanticipated queries
- geographical information systems
 - not a natural model for relational systems

management concerns

- information quality
 - bad information is worse than none at all
 - it’s easy to load a database with accurate information
 - it’s harder to maintain the accuracy over time
 - distribution makes this worse
 - multiplicity of information, lack of “human access control”
- accessibility
 - the point of having the information is to use it
 - availability
 - admissibility
 - but there’s a downside...
 - once you have information, you may have to disclose it
 - security! (remember the risks, from last week)

organisational perspectives

- information all comes with a point of view
 - complete information is a myth; so what is left out?
- information models encode assumptions
 - about the state of the world or the objects modeled
 - example: US Army deployment
- normalisation distributes information
 - distributed locus of power and control

summary

- key points:
 - information processing is about making the world tractable
 - amenable to summarisation, modeling & prediction
 - DBMS provides a framework for data management
 - regularised for efficiency, consistency & maintenance
 - think about where the database fits
 - technically
 - organisationally
 - politically

homework

- See the web site for details
 - two questions
 - exercise in transforming a database into 1NF, 2NF, 3NF
 - explore DNS as a distributed database
 - due at next Wednesday’s lecture

what’s coming up

- Friday
 - discussion section
 - homeworks back
- Monday
 - performance and competition
 - Alter chapter 6