affordances

- "knowledge in the head" versus "knowledge in the world"
 - the world imposes constraints
 - constraints can make things easier for us
 - physically
 - cognitively
 - examples:
 - door handles
 - the VGA plug for my laptop

affordances

- an affordance is "a property of the world that affords action to appropriately equipped individuals"
 - three-way relationship
 - a coupling of perception with action
 - how you move around affects how you see
 - examples
 - chairs afford sitting (if...)
 - knobs afford turning (if...)
 - buttons afford pressing
 - doors: vertical plates and horizontal bars
affordances

visual design

• what is visual design for?
 – not just about aesthetics...
 – communicating function
• we live in a visually rich world
 – we’re used to processing visual information
 – it’s a very high bandwidth channel
 – visual design can convey a great deal
 • how system is structured
 • how system should be used

visual design

• what is visual design for?
 – two paradigms for interaction
 – the recognition paradigm (e.g. GUI)
 • opportunities for action are visibly present
 – the recall paradigm (e.g. UNIX commands)
 • you need to remember how to take action
• this is not an all-or-nothing thing
 – you need to be able to design for recognition
 • depends on the kinds of tasks
 • visual and perceptual features help make actions clear

recognition versus recall

visual representation

• human beings are very good at...
 – understanding information
 – interpreting the world
 – seeing patterns
• or are they?
 – you can only see a pattern if it’s been made visible for you

visual representation
• think of representations as cognitive artifacts
 – ways we structure the world to make it easier to process
• example: roman and arabic numerals
 – both represent numbers
 – arabic numerals make computation easier
 • positional structure
 • zero
• need to design representations accordingly
 – understand how they’ll be processed

• gestalt – “the whole”
 – perception of objects
 – the holistic perception of scenes
 – underlying principles
 • regular patterns on which perception is based
 • determine how the visual scene is parsed

• grouping
 – items that appear grouped appear to be related
gestalt in GUI design

- grouping
 - use proximity to indicate relatedness

- alignment is an important cue

- exploiting consistency and structure
 - design interfaces as "visual languages"
 - a set of visual conventions that can be combined and extended across a range of specific uses
 - using visual characteristics to express features of the objects
 - consistency across representations
 - visual structure
 - information density
 - abstraction

visual languages

- sometimes these features are more notable by their absence...
 - how do these items relate?

- levels of abstraction
 - abstracting simplifies the design...
 - ... but only so far before it becomes meaningless
visual languages

• looking for common patterns and scales
 – the key is to build a system of representations
 – based on systematic variability
• bertin’s “retinal variables”
 – size
 – value
 – orientation
 – texture
 – shape
 – position

spatial logic

• aligning structure
 – the structure of the visual display
 – the structure of the task
• left-to-right, top-to-bottom
 – we’re used to “reading” texts and images
 – look for the “flow” of the task
 – make sure it’s reflected in the interface

grid-based design

• grid-based design creates a framework
 – exploiting techniques from graphic design
 – an underlying logic to the problems of layout
 – you can use the grid many ways
 • to tie objects together visually
 • to separate them

• consistency and structure

• spatial logic

• grid-based design
grid-based design

- a single grid can provide multiple uses

grid-based design

- a consistent layout structure
 - operates across different interfaces and dialogs
 - makes it easier to parse the visual scene
 - exploits proximity, grouping, symmetry, alignment

summary: design principles

- reduce design to its essence
- combine elements for maximum leverage
- use alignment to establish relationships
- use symmetry to ensure balance
- reinforce structure through repetition
- use grid-based layouts
- coordinate to ensure visual consistency
- pay attention to performance

visualization

- the key issue in visual design
 - visual design conveys
 - information
 - intent
 - meaning
- can we exploit this information?
 - designing systems in which the visual aspects of an interface are key features of the information that is provided?
 - shift the information burden from the cognitive to the perceptual system?
visualization

- conveying information visually
 - exploiting features of the human visual system
 - the retinal variables
 - information in emergent structure
 - visual properties as outcomes of individual events
 - exploit the fact that people can perceive patterns
 - so, how do we help them?

minard

visualizing web data

visualizing tabular information

visualizing statistical trends

visualizing temporal patterns
visualizing temporal patterns

visualization

• graphical design is about visual communication
 – the lessons of Bertin’s retinal variables
• interactive visualization goes beyond that
 – the emphasis is on
 • dynamics -- how information changes over time
 – the “pattern” might not be in a single element, but in structure
 – example: air traffic
 • exploration -- correlating patterns
 – multiple simultaneous views
 – response to interaction

want to know more?

• we’ve only scratched the surface
 – this isn’t something with hard-and-fast rules
 – need to develop an “eye” for good design
• these books can tell you more:
 – “Designing Visual Interfaces”, Mullet & Sano
 – “Things that Make Us Smart”, Norman