
1

ICS 105:
Project in HCI

UI Toolkits and
Programming Models

where are we?

• lectures
– done with evaluation techniques
– a couple of lectures on toolkits and programming
– other topics:

• graphical design and screen layout
• current hot research issues
• case study

• projects
– first set of paper prototypes done, rest tomorrow
– reports due next Friday
– redesign and implementation

ui toolkits

hardware

operating system

window system

interactive application

UI toolkit

what does the toolkit do?

• interaction with window system
• layout and component management
• offers a programming model
• unified approach to input and output
• reusable solutions

• we’ll mainly be concerned with the last three

model-view-controller

• MVC is a common structure for components
– separation of concerns

• separates input, output, internal logic

– originally developed for SmallTalk

model

ctrl

view

model-view-controller

• model is internal representation
– information the application is manipulating

• mailbox in a mail reader, document in a word processor,
etc.

• concentrates internal logic and consistency management

model

ctrl

view



2

model-view-controller

• view is the visual representation
– may have multiple views

• e.g. graphical and textual depictions

– notifications from model when it changes
• maintains consistency

model

ctrl

view

multiple views

model-view-controller

• controller
– handles all interaction with the user

• receives input events, decides what they mean

– makes changes to view and to model
• e.g. edits vs scrolling

model

ctrl

view

model-view-controller

• advantages
– separation of concerns supports better software

engineering
• easy to modify and maintain

– allows replication
• makes it easier to add new views and controls later

• variations
– many systems combine view and controller

• in direct manipulation, view is controller

rendering models

• three components to ui toolkits
– architecture (e.g. MVC)
– input (to come)
– output (focus for now)

• output
– primary distinction is the rendering model

• how images are described and constructed

raster models

• fundamental structure is the raster image
– array of color values
– array of pixel coordinates from (0,0)

to size of screen
• typically top left to bottom right

– great for images, less good for structured
graphics

• toolkit maintains minimal information
about structure

– e.g. the lines and objects that gave rise to pixel image



3

stroked models

• fundamental structures are paths and strokes
– higher level than individual pixels

• resolution independence

– originated in printer Page Description Languages
• Press, InterPress, PostScript

– Display Postscript used in NeWS and NeXT
– PDF-based rendering model in Apple’s MacOS X

stroked models

• joins

• complex paths

other advanced features

• font support and antialiasing
– font support can be minimal in raster models
– need to get from “letter+size” to raster image

• originally, stored fonts simply as bitmaps
• these days, use programmatic font support (TrueType)

– antialiasing makes fonts easier to read

other advanced features

other advanced features

• alpha channel

Java 2D

• Java graphics originally based on AWT
– minimal

• clearly just enough to ship…

• Java now supports two-level design
– JFC is the user interface component
– Java2D is the underlying graphics component

• much richer rendering model



4

Java2D demo widgets

• Macintosh (1984) first commercial GUI system
– two aspects

• user interface to the system itself
• Mac Toolbox made components available to others

– seven basic widgets
• buttons
• sliders (also implement scrollbars)
• pull-down menus
• checkboxes
• radio buttons
• text fields
• file open/save dialog

– other widgets (e.g. window decorations) not in toolbox

widgets

• second Mac release added more
– hierarchical (pull-right) menus
– in-place menus (drop-down selection boxes)
– lists (single and multiple selections)

widgets

• more recent additions (Macs and others)
– tabbed dialogs
– hierarchical lists (trees)
– “combo boxes” (combination menu, list, text)

• this set pretty much covers conventional UI
– not all that’s there – e.g. pie menus
– different models for different

• interfaces for PDAs?
• interfaces for interaction on TV?

widget model

• convenience for both users and developers
– users get familiar interaction styles

• established “genres” of user interface design
• eases transfer of skills from one application to another

– programmers get predefined units
• eases conformance to UI guidelines
• saves repetition of effort

• only part of the story, though
– widgets are components
– how do components fit together?
– how are behaviors defined?

event-based programming

• basic program structures
– non-interactive applications

• start, do something, stop

– simple interactive applications
• main loop – await instructions, carry them out, repeat

• most interactive applications more complex
– lots of state
– many operations

• operations of many different sorts
• how many different operations can you carry out?



5

event-based programming event-based programming

• modal solutions
– restrict operations that can take place at any time
– places the burden on the user

• which mode are you in now?
• how do you get from mode to mode?
• easier to make errors
• barriers in the way of operations

• complexity grows
– effective design requires more sophisticated model

event-based programming

• turn things around
– instead of user waiting on system, have system

wait on user
– this is the event based approach

• declarative approach to programming
• user actions generate events

– e.g. mouse clicked, button pressed, scroll bar moved

• set up object structure
– describe structure of solution
– describe how objects will respond to events

• implicit main loop
– collects events, determines targets, sends events

interactor tree

1234567

7 8 9

4 5 6

1 2 3

0 + -

= * /

interactor tree

1234567

7 8 9

4 5 6

1 2 3

0 + -

= * /

outer window (black)

interactor tree

1234567

7 8 9

4 5 6

1 2 3

0 + -

= * /

outer window (black)

inner window (green)



6

interactor tree

1234567

7 8 9

4 5 6

1 2 3

0 + -

= * /

outer window (black)

inner window (green)

display

keypad

interactor tree

1234567

7 8 9

4 5 6

1 2 3

0 + -

= * /

outer window (black)

inner window (green)

display

keypad

button #0
button #1
button #2
button #3

interactor tree

1234567

7 8 9

4 5 6

1 2 3

0 + -

= * /

outer window (black)

inner window (green)

display

keypad

button #0
button #1
button #2
button #3

interactor tree

• events delivery
– starts at the bottom of

the tree
– walks up until some

object expresses interest
– different events might be

delivered differently

1234567

7 8 9

4 5 6

1 2 3

0 + -

= * /

interactor tree

• events delivery
– starts at the bottom of

the tree
– walks up until some

object expresses interest
– different events might be

delivered differently
– left-click?

1234567

7 8 9

4 5 6

1 2 3

0 + -

= * /

left-click!

interactor tree

• events delivery
– starts at the bottom of

the tree
– walks up until some

object expresses interest
– different events might be

delivered differently
– left-click?

• deliver to button

1234567

7 8 9

4 5 6

1 2 3

0 + -

= * /

left-click!



7

interactor tree

• events delivery
– starts at the bottom of

the tree
– walks up until some

object expresses interest
– different events might be

delivered differently
– right-click?

1234567

7 8 9

4 5 6

1 2 3

0 + -

= * /

right-click!

interactor tree

• events delivery
– starts at the bottom of

the tree
– walks up until some

object expresses interest
– different events might be

delivered differently
– right-click

• button not interested
• deliver to keypad

– keypad menu

1234567

7 8 9

4 5 6

1 2 3

0 + -

= * /

right-click!

interactor tree

• events delivery
– starts at the bottom of

the tree
– walks up until some

object expresses interest
– different events might be

delivered differently
– keypress?

1234567

7 8 9

4 5 6

1 2 3

0 + -

= * /

key “6”

interactor tree

• events delivery
– starts at the bottom of

the tree
– walks up until some

object expresses interest
– different events might be

delivered differently
– keypress?

• button not interested
• keypad not interested
• deliver to window

– global input handling

1234567

7 8 9

4 5 6

1 2 3

0 + -

= * /

key “6”

ui and oop

• event-based model meshes naturally with OOP
– objects and containment structures
– keep “behavior” close to “data”
– delegate event processing between objects

constraints

• event model is the conventional approach
– another common approach is to use constraints

• constraint-based programming
– declarative approach to programming
– constraint is a desired invariant

• a := b * 2
• a <-> b * 2

– complexity
• satisfaction engine ensures all constraints maintained
• single and multi-way constraints



8

constraints

• constraints apply naturally to UI
– think of MVC

• view must track model
• controller must keep view in sync
• examples

– manage a scrollbar by expressing a constraint between the
location of the scroll box and the current view port

– keep item centered in window as it resizes by expressing
constraint about the size of padding on either side

constraints

• advantages of constraint approach?
– declarative programming style

• express what you want to happen once and for all
• event-based programming distributes activity

– hard to find the one place where things happen

– express natural regularities
• people understand causation naturally
• constraint-based designs can be very intuititive

• disadvantages?
– computationally expensive
– not yet mainstream (but we’re working on it)

next week

• more in-depth on Swing/JFC


